login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055325
Matrix inverse of Euler's triangle A008292.
4
1, -1, 1, 3, -4, 1, -23, 33, -11, 1, 425, -620, 220, -26, 1, -18129, 26525, -9520, 1180, -57, 1, 1721419, -2519664, 905765, -113050, 5649, -120, 1, -353654167, 517670461, -186123259, 23248085, -1166221, 25347, -247, 1, 153923102577
OFFSET
1,4
LINKS
Robert Israel, Table of n, a(n) for n = 1..3321 (rows 1 to 81, flattened)
EXAMPLE
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 3, -4, 1;
[4] -23, 33, -11, 1;
[5] 425, -620, 220, -26, 1;
[6] -18129, 26525, -9520, 1180, -57, 1;
[7] 1721419, -2519664, 905765, -113050, 5649, -120, 1;
[8]-353654167, 517670461, -186123259, 23248085, -1166221, 25347, -247, 1;
MAPLE
A008292:= proc(n, k) option remember;
if k < 1 or k > n then 0
elif k = 1 or k = n then 1
else (k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1))
fi
end proc:
T:= Matrix(10, 10, (i, j) -> A008292(i, j)):
R:= T^(-1):
seq(seq(R[i, j], j=1..i), i=1..10); # Robert Israel, May 25 2018
MATHEMATICA
m = 10 (*rows*);
t[n_, k_] := Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
M = Array[t, {m, m}] // Inverse;
Table[M[[i, j]], {i, 1, m}, {j, 1, i}] // Flatten (* Jean-François Alcover, Mar 05 2019 *)
CROSSREFS
Sequence in context: A361540 A354293 A255905 * A162498 A134049 A224069
KEYWORD
sign,tabl
AUTHOR
Christian G. Bower, May 12 2000
STATUS
approved