login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361540
Expansion of e.g.f. A(x,y) satisfying A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n!, as a triangle read by rows.
12
1, 1, 1, 3, 4, 1, 22, 39, 18, 1, 269, 604, 426, 92, 1, 4616, 12625, 12040, 4550, 520, 1, 102847, 332766, 401355, 218300, 50085, 3222, 1, 2824816, 10574725, 15456756, 11017895, 3867080, 577731, 21700, 1, 92355769, 393171416, 676130644, 597596216, 284455150, 69038984, 7022596, 157544, 1
OFFSET
0,4
COMMENTS
A202999(n) = Sum_{k=0..n} T(n,k).
A361053(n) = Sum_{k=0..n} T(n,k) * 2^k.
A361054(n) = Sum_{k=0..n} T(n,k) * 3^k.
A361055(n) = Sum_{k=0..n} T(n,k) * 4^k.
A361056(n) = Sum_{k=0..n} T(n,k) * 2^(n-k).
A361057(n) = Sum_{k=0..n} T(n,k) * 3^(n-k).
A203013(n) = Sum_{k=0..n} T(n,k) * 2^(n-k) * (-1)^k.
A155806(n) = T(n,0) for n >= 0; e.g.f. G(x) = Sum_{n>=0} G(x)^(n^2)*x^n/n!.
A361544(n) = T(n,1) for n >= 1.
A361549(n) = T(n,2) for n >= 2.
A185298(n) = T(n,n-1) for n >= 1; e.g.f. x*exp(x)*exp(x*exp(x)).
A361539(n) = T(n,n-2) for n >= 2.
A361688(n) = T(2*n,n) / binomial(2*n,n) for n >= 0.
LINKS
FORMULA
E.g.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k/n! may be defined as follows.
(1) A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n!.
(2) A(x,y) = Sum_{n>=0} A(x,y)^(n^2) * exp(y*x*A(x,y)^n) * x^n/n!.
EXAMPLE
E.g.f. A(x,y) = 1 + (y + 1)*x + (y^2 + 4*y + 3)*x^2/2! + (y^3 + 18*y^2 + 39*y + 22)*x^3/3! + (y^4 + 92*y^3 + 426*y^2 + 604*y + 269)*x^4/4! + (y^5 + 520*y^4 + 4550*y^3 + 12040*y^2 + 12625*y + 4616)*x^5/5! + (y^6 + 3222*y^5 + 50085*y^4 + 218300*y^3 + 401355*y^2 + 332766*y + 102847)*x^6/6! + (y^7 + 21700*y^6 + 577731*y^5 + 3867080*y^4 + 11017895*y^3 + 15456756*y^2 + 10574725*y + 2824816)*x^7/7! + (y^8 + 157544*y^7 + 7022596*y^6 + 69038984*y^5 + 284455150*y^4 + 597596216*y^3 + 676130644*y^2 + 393171416*y + 92355769)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k in e.g.f. A(x,y) begins:
[1];
[1, 1];
[3, 4, 1];
[22, 39, 18, 1];
[269, 604, 426, 92, 1];
[4616, 12625, 12040, 4550, 520, 1];
[102847, 332766, 401355, 218300, 50085, 3222, 1];
[2824816, 10574725, 15456756, 11017895, 3867080, 577731, 21700, 1];
[92355769, 393171416, 676130644, 597596216, 284455150, 69038984, 7022596, 157544, 1];
[3506278528, 16744363569, 33151425840, 35028273756, 21134516256, 7193104758, 1262445744, 90148860, 1224576, 1]; ...
RELATED TABLE.
The elements of this triangle T(n,k) when divided by binomial(n,k) yields the related triangle:
[1];
[1, 1];
[3, 2, 1];
[22, 13, 6, 1];
[269, 151, 71, 23, 1];
[4616, 2525, 1204, 455, 104, 1];
[102847, 55461, 26757, 10915, 3339, 537, 1];
[2824816, 1510675, 736036, 314797, 110488, 27511, 3100, 1];
[92355769, 49146427, 24147523, 10671361, 4063645, 1232839, 250807, 19693, 1];
[3506278528, 1860484841, 920872940, 417003259, 167734256, 57088133, 15029116, 2504135, 136064, 1]; ...
PROG
(PARI) /* E.g.f. A(x, y) = Sum_{n>=0} (A(x, y)^n + y)^n * x^n/n! */
{T(n, k) = my(A = 1); for(i=1, n, A = sum(m=0, n, (A^m + y +x*O(x^n))^m * x^m/m! )); n!*polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(" "))
(PARI) /* E.g.f. A(x, y) = Sum_{n>=0} A(x, y)^(n^2) * exp(y*x*A(x, y)^n) * x^n/n! */
{T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, (A +x*O(x^n))^(m^2) * exp(y*x*A^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(" "))
CROSSREFS
Cf. A202999 (y=1), A361053 (y=2), A361054 (y=3), A361055 (y=4), A361056, A361057, A203013.
Cf. A155806 (T(n,0)), A361544 (T(n,1)), A361549 (T(n,2)), A185298 (T(n,n-1)), A361539 (T(n,n-2)), A361688 (T(2*n,n)/C(2*n,n)).
Sequence in context: A055133 A342186 A113084 * A354293 A255905 A055325
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 20 2023
STATUS
approved