login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361057
Expansion of e.g.f. A(x) satisfying A(x) = Sum_{n>=0} (3*A(x)^n + 1)^n * x^n/n!.
8
1, 4, 40, 1000, 42208, 2511904, 194701888, 18644964160, 2128895802880, 282664859507200, 42830926407126016, 7299282818219035648, 1382930912338770866176, 288548709643121903915008, 65787364162207649519116288, 16282501210870115738111156224, 4350458941547832791800523653120
OFFSET
0,2
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined as follows.
(1) A(x) = Sum_{n>=0} (3*A(x)^n + 1)^n * x^n/n!.
(2) A(x) = Sum_{n>=0} A(x)^(n^2) * exp(x*A(x)^n) * 3^n * x^n/n!.
a(n) = 0 (mod 4) for n > 0.
a(n) = Sum_{k=0..n} A361540(n,k) * 3^(n-k). - Paul D. Hanna, Mar 20 2023
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 40*x^2/2! + 1000*x^3/3! + 42208*x^4/4! + 2511904*x^5/5! + 194701888*x^6/6! + 18644964160*x^7/7! + 2128895802880*x^8/8! +...
where the e.g.f. satisfies the following series identity:
A(x) = 1 + (3*A(x) + 1)*x + (3*A(x)^2 + 1)^2*x^2/2! + (3*A(x)^3 + 1)^3*x^3/3! + (3*A(x)^4 + 1)^4*x^4/4! + ... + (3*A(x)^n + 1)^n * x^n/n! + ...
and
A(x) = exp(x) + A(x)*exp(x*A(x))*3*x + A(x)^4*exp(x*A(x)^2)*3^2*x^2/2! + A(x)^9*exp(x*A(x)^3)*3^3*x^3/3! + A(x)^16*exp(x*A(x)^4)*3^4*x^4/4! + ... + A(x)^(n^2) * exp(x*A(x)^n) * 3^n * x^n/n! + ...
PROG
(PARI) /* E.g.f.: Sum_{n>=0} (3*A(x)^n + 1)^n * x^n/n! */
{a(n) = my(A = 1); for(i=1, n, A = sum(m=0, n, (3*A^m + 1 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} A(x)^(n^2) * exp(x*A(x)^n) * 3^n * x^n/n! */
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, (A +x*O(x^n))^(m^2) * exp(x*A^m +x*O(x^n)) * 3^m * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 28 2023
STATUS
approved