login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321526
Number of partitioned graphs on n labeled nodes.
1
1, 4, 40, 960, 53248, 6651904, 1839202304, 1111322787840, 1453210774536192, 4080507553002291200, 24448060793158379765760, 310908581955001382242091008, 8355018414502495124631718985728, 472643828352464917980832865510752256
OFFSET
1,2
COMMENTS
Bell numbers (partitions of the nodes) multiplied by the number of graphs on the nodes.
LINKS
FORMULA
a(n) = A000110(n) * A006125(n).
a(n) = Bell(n) * 2^binomial(n, 2).
EXAMPLE
a(1) = 1 * 1; a(2) = 2 * 2, a(3) = 5 * 8, a(4) = 15 * 64.
MATHEMATICA
a[n_] := BellB[n]*2^Binomial[n, 2]; Array[a, 14] (* Amiram Eldar, Nov 12 2018 *)
PROG
(PARI) bell(n)={sum(k=0, n, stirling(n, k, 2))}
a(n)=bell(n)*2^binomial(n, 2) \\ Andrew Howroyd, Nov 12 2018
CROSSREFS
Sequence in context: A211040 A012957 A012977 * A361057 A013108 A173945
KEYWORD
nonn
AUTHOR
Peter Baumgartner, Nov 12 2018
STATUS
approved