OFFSET
0,7
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..16384
Antti Karttunen, Data supplement: n, a(n) computed for n = 0..100000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.
FORMULA
Expansion of x^3 * (psi(x^3) * psi(x^6))^3 / (psi(x) * psi(x^2)) in powers of x where psi() is a Ramanujan theta function.
Expansion of x^3 * chi(-x) * f(-x^12)^6 / (chi(-x^3)^3 * f(-x^4)^2) in powers of x where chi(), f() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/6) (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321528.
a(n) = s(n/3) - s(n/4) - s(n/6) + s(n/12) where s(x) = sum of divisors of x for integer x else 0.
a(6*n + 1) = a(6*n + 5) = a(12*n + 2) = a(12*n + 10) = 0.
EXAMPLE
G.f. = x^3 - x^4 + 2*x^6 - 3*x^8 + 4*x^9 + x^12 + 6*x^15 - 7*x^16 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^3 QPochhammer[ x, x^2] QPochhammer[ x^12]^6 / (QPochhammer[ x^3, x^6]^3 QPochhammer[ x^4]^2), {x, 0, n}];
a[ n_] := With[ {s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, 0, s[n/3] - s[n/4] - s[n/6] + s[n/12]]];
a[ n_] := If[ n < 1, 0, Sum[ d {0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0, 0}[[Mod[d, 12, 1]]] / 12, {d, Divisors[n]}]];
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d * [0, 0, 0, 4, -3, 0, 2, 0, -3, 4, 0, 0][d%12 + 1] / 12))};
(PARI) {a(n) = my(s = x -> if( frac(x), 0, sigma(x))); if( n<1, 0, s(n/3) - s(n/4) - s(n/6) + s(n/12))};
(PARI) {a(n) = my(A); n-=3; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 * eta(x^12 + A)^6 / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^4 + A)^2), n))};
(Magma) A := Basis( ModularForms( Gamma0(12), 2), 76); A[4] - A[5];
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Nov 12 2018
STATUS
approved