login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033686
One-ninth of theta series of A2[hole]^2.
14
1, 2, 5, 4, 8, 6, 14, 8, 14, 10, 21, 16, 20, 14, 28, 16, 31, 18, 40, 20, 32, 28, 42, 24, 38, 32, 62, 28, 44, 30, 56, 40, 57, 34, 70, 36, 72, 38, 70, 48, 62, 52, 85, 44, 68, 46, 112, 56, 74, 50, 100, 64, 80, 64, 98, 56, 108, 58, 124, 60, 112, 76, 112, 64, 98, 66, 155, 80, 104
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number of partition pairs of n where each partition is 3-core (see Theorem 2.1 of Wang link). - Michel Marcus, Jul 14 2015
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^2.
LINKS
Kevin B. Ford, Some infinite series identities, Proc. Amer. Math. Soc., Volume 119, Number 3 (November 1993), 1019-1020.
Liuquan Wang, Explicit Formulas for Partition Pairs and Triples with 3-Cores, arXiv:1507.03099 [math.NT], 2015.
FORMULA
a(n) = sigma(3*n+2)/3. Euler transform of period 3 sequence [2, 2, -4, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of q^(-2/3) * c(q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
Expansion of q^(-2/3) * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Mar 16 2012
Convolution square of A033687. - Michael Somos, Oct 17 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A242874.
27 * a(n) = A096726(3*n + 2) - A281722(3*n + 2). - Michael Somos, Sep 04 2017
a(n) = A144615(n)/3. - Robert G. Wilson v, Jan 12 2018
From Peter Bala, Jan 07 2021: (Start)
a(n) = (-1)^n*A134079(n).
A(x) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(3*n+1))^2 = Sum_{n = -oo..oo} x^(4*n+2)/(1 - x^(3*n+2))^2 (apply Ford, equation 1, with c = x^(3/2), d = x^(1/2), |x| < 1 to the g.f. Sum_{n = -oo..oo} x^n /(1 - x^(3*n + 1)) of A033687).
Conjectural g.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(3*n+2))^2 = Sum_{n = -oo..oo} x^(5*n+1)/(1 - x^(3*n+1))^2. (End)
Sum_{k=1..n} a(k) = (2*Pi^2/27) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 4*x^3 + 8*x^4 + 6*x^5 + 14*x^6 + 8*x^7 + 14*x^8 + ...
G.f. = q^2 + 2*q^5 + 5*q^8 + 4*q^11 + 8*q^14 + 6*q^17 + 14*q^20 + 8*q^23 + ...
Theta series of A2[hole]^2 = c(q)^2 = 9*q^(2/3) + 18*q^(5/3) + 45*q^(8/3) + 36*q^(11/3) + 72*q^(14/3) + 54*q^(17/3) + ...
MAPLE
with(numtheory): seq(sigma(3*n-1)/3, n=1..2000); # Muniru A Asiru, Jan 18 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 26 2014 *)
Array[ DivisorSigma[1, 3 # - 1]/3 &, 69] (* Robert G. Wilson v, Jan 12 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Oct 17 2006 */
(PARI) a(n)=sigma(3*n+2)/3; \\ Michel Marcus, Jul 14 2015
(Sage) ModularForms( Gamma0(9), 2, prec=195).2 # Michael Somos, May 26 2014
(Magma) Basis( ModularForms( Gamma0(9), 2), 195)[3]; /* Michael Somos, Jul 14 2015 */
(GAP) sequence := List([1..100010], n->Sigma(3*n-1)/3); # Muniru A Asiru, Dec 29 2017
(Magma) [SumOfDivisors(3*n+2)/3: n in [0..70]]; // Vincenzo Librandi, Jan 13 2018
CROSSREFS
Cf. A000203 (sigma), A016789 (3n+2).
Sequence in context: A081556 A187012 A134079 * A243973 A286015 A183542
KEYWORD
nonn,easy
STATUS
approved