OFFSET
0,2
COMMENTS
Number of partition pairs of n where each partition is 3-core (see Theorem 2.1 of Wang link). - Michel Marcus, Jul 14 2015
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^2.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..20000
Kevin B. Ford, Some infinite series identities, Proc. Amer. Math. Soc., Volume 119, Number 3 (November 1993), 1019-1020.
Liuquan Wang, Explicit Formulas for Partition Pairs and Triples with 3-Cores, arXiv:1507.03099 [math.NT], 2015.
FORMULA
a(n) = sigma(3*n+2)/3. Euler transform of period 3 sequence [2, 2, -4, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of q^(-2/3) * c(q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function. - Michael Somos, Oct 17 2006
Expansion of q^(-2/3) * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Mar 16 2012
Convolution square of A033687. - Michael Somos, Oct 17 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A242874.
a(n) = A144615(n)/3. - Robert G. Wilson v, Jan 12 2018
From Peter Bala, Jan 07 2021: (Start)
a(n) = (-1)^n*A134079(n).
A(x) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(3*n+1))^2 = Sum_{n = -oo..oo} x^(4*n+2)/(1 - x^(3*n+2))^2 (apply Ford, equation 1, with c = x^(3/2), d = x^(1/2), |x| < 1 to the g.f. Sum_{n = -oo..oo} x^n /(1 - x^(3*n + 1)) of A033687).
Conjectural g.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(3*n+2))^2 = Sum_{n = -oo..oo} x^(5*n+1)/(1 - x^(3*n+1))^2. (End)
Sum_{k=1..n} a(k) = (2*Pi^2/27) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 4*x^3 + 8*x^4 + 6*x^5 + 14*x^6 + 8*x^7 + 14*x^8 + ...
G.f. = q^2 + 2*q^5 + 5*q^8 + 4*q^11 + 8*q^14 + 6*q^17 + 14*q^20 + 8*q^23 + ...
Theta series of A2[hole]^2 = c(q)^2 = 9*q^(2/3) + 18*q^(5/3) + 45*q^(8/3) + 36*q^(11/3) + 72*q^(14/3) + 54*q^(17/3) + ...
MAPLE
with(numtheory): seq(sigma(3*n-1)/3, n=1..2000); # Muniru A Asiru, Jan 18 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 26 2014 *)
Array[ DivisorSigma[1, 3 # - 1]/3 &, 69] (* Robert G. Wilson v, Jan 12 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Oct 17 2006 */
(PARI) a(n)=sigma(3*n+2)/3; \\ Michel Marcus, Jul 14 2015
(Sage) ModularForms( Gamma0(9), 2, prec=195).2 # Michael Somos, May 26 2014
(Magma) Basis( ModularForms( Gamma0(9), 2), 195)[3]; /* Michael Somos, Jul 14 2015 */
(GAP) sequence := List([1..100010], n->Sigma(3*n-1)/3); # Muniru A Asiru, Dec 29 2017
(Magma) [SumOfDivisors(3*n+2)/3: n in [0..70]]; // Vincenzo Librandi, Jan 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved