Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Dec 17 2022 02:16:04
%S 1,2,5,4,8,6,14,8,14,10,21,16,20,14,28,16,31,18,40,20,32,28,42,24,38,
%T 32,62,28,44,30,56,40,57,34,70,36,72,38,70,48,62,52,85,44,68,46,112,
%U 56,74,50,100,64,80,64,98,56,108,58,124,60,112,76,112,64,98,66,155,80,104
%N One-ninth of theta series of A2[hole]^2.
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C Number of partition pairs of n where each partition is 3-core (see Theorem 2.1 of Wang link). - _Michel Marcus_, Jul 14 2015
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^2.
%H Muniru A Asiru, <a href="/A033686/b033686.txt">Table of n, a(n) for n = 0..20000</a>
%H Kevin B. Ford, <a href="https://doi.org/10.2307/2160547">Some infinite series identities</a>, Proc. Amer. Math. Soc., Volume 119, Number 3 (November 1993), 1019-1020.
%H Liuquan Wang, <a href="http://arxiv.org/abs/1507.03099">Explicit Formulas for Partition Pairs and Triples with 3-Cores</a>, arXiv:1507.03099 [math.NT], 2015.
%F a(n) = sigma(3*n+2)/3. Euler transform of period 3 sequence [2, 2, -4, ...]. - _Vladeta Jovovic_, Sep 14 2004
%F Expansion of q^(-2/3) * c(q)^2 / 9 in powers of q where c(q) is a cubic AGM theta function. - _Michael Somos_, Oct 17 2006
%F Expansion of q^(-2/3) * (eta(q^3)^3 / eta(q))^2 in powers of q. - _Michael Somos_, Mar 16 2012
%F Convolution square of A033687. - _Michael Somos_, Oct 17 2006
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A242874.
%F 27 * a(n) = A096726(3*n + 2) - A281722(3*n + 2). - _Michael Somos_, Sep 04 2017
%F a(n) = A144615(n)/3. - _Robert G. Wilson v_, Jan 12 2018
%F From _Peter Bala_, Jan 07 2021: (Start)
%F a(n) = (-1)^n*A134079(n).
%F A(x) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(3*n+1))^2 = Sum_{n = -oo..oo} x^(4*n+2)/(1 - x^(3*n+2))^2 (apply Ford, equation 1, with c = x^(3/2), d = x^(1/2), |x| < 1 to the g.f. Sum_{n = -oo..oo} x^n /(1 - x^(3*n + 1)) of A033687).
%F Conjectural g.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(3*n+2))^2 = Sum_{n = -oo..oo} x^(5*n+1)/(1 - x^(3*n+1))^2. (End)
%F Sum_{k=1..n} a(k) = (2*Pi^2/27) * n^2 + O(n*log(n)). - _Amiram Eldar_, Dec 16 2022
%e G.f. = 1 + 2*x + 5*x^2 + 4*x^3 + 8*x^4 + 6*x^5 + 14*x^6 + 8*x^7 + 14*x^8 + ...
%e G.f. = q^2 + 2*q^5 + 5*q^8 + 4*q^11 + 8*q^14 + 6*q^17 + 14*q^20 + 8*q^23 + ...
%e Theta series of A2[hole]^2 = c(q)^2 = 9*q^(2/3) + 18*q^(5/3) + 45*q^(8/3) + 36*q^(11/3) + 72*q^(14/3) + 54*q^(17/3) + ...
%p with(numtheory): seq(sigma(3*n-1)/3, n=1..2000); # _Muniru A Asiru_, Jan 18 2018
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* _Michael Somos_, May 26 2014 *)
%t Array[ DivisorSigma[1, 3 # - 1]/3 &, 69] (* _Robert G. Wilson v_, Jan 12 2018 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* _Michael Somos_, Oct 17 2006 */
%o (PARI) a(n)=sigma(3*n+2)/3; \\ _Michel Marcus_, Jul 14 2015
%o (Sage) ModularForms( Gamma0(9), 2, prec=195).2 # _Michael Somos_, May 26 2014
%o (Magma) Basis( ModularForms( Gamma0(9), 2), 195)[3]; /* _Michael Somos_, Jul 14 2015 */
%o (GAP) sequence := List([1..100010],n->Sigma(3*n-1)/3); # _Muniru A Asiru_, Dec 29 2017
%o (Magma) [SumOfDivisors(3*n+2)/3: n in [0..70]]; // _Vincenzo Librandi_, Jan 13 2018
%Y Cf. A033687, A096726, A097723, A134079, A144615, A242874, A281722.
%Y Cf. A000203 (sigma), A016789 (3n+2).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_