

A243973


a(n) is the repeating digit in 2^A243972(n).


0



2, 5, 4, 8, 9, 1, 8, 9, 1, 8, 3, 5, 1, 6, 7, 3, 1, 4, 7, 5, 1, 2, 8, 0, 7, 7, 8, 1, 4, 1, 8, 5, 7, 5, 9, 4, 8, 1, 6, 7, 3, 5, 0, 4, 9, 8, 6, 7, 4, 1, 6, 3, 0, 2, 9, 8, 4, 5, 8, 9, 2, 3, 0, 3, 3, 5, 1, 6, 3, 4, 6, 6, 8, 6, 4, 8, 4, 6, 5, 7, 4, 1, 1, 7, 1, 1, 9, 3, 2, 5, 2, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In case of a tie, choose the smaller integer.


LINKS

Table of n, a(n) for n=1..93.


EXAMPLE

2^A243972(4) = 2^23 = 8388608 contains four 8's. Thus A243972(4) = 23 and here, since 8 is the repeating digit, a(4) = 8.


PROG

(Python)
def b():
..n = 1
..k = 1
..while k < 50000:
....st = str(2**k)
....if len(st) >= n:
......for a in range(10):
........count = 0
........for i in range(len(st)):
..........if st[i] == str(a):
............count += 1
........if count == n:
..........print(a, end=', ')
..........n += 1
..........k = 0
..........break
......k += 1
....else:
......k += 1
b()


CROSSREFS

Cf. A243972.
Sequence in context: A187012 A134079 A033686 * A286015 A183542 A080031
Adjacent sequences: A243970 A243971 A243972 * A243974 A243975 A243976


KEYWORD

nonn,base


AUTHOR

Derek Orr, Jun 16 2014


STATUS

approved



