login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328203
Expansion of Sum_{k>=1} k * x^k / (1 - x^(2*k))^2.
7
1, 2, 5, 4, 8, 10, 11, 8, 20, 16, 17, 20, 20, 22, 42, 16, 26, 40, 29, 32, 58, 34, 35, 40, 53, 40, 74, 44, 44, 84, 47, 32, 90, 52, 94, 80, 56, 58, 106, 64, 62, 116, 65, 68, 174, 70, 71, 80, 102, 106, 138, 80, 80, 148, 146, 88, 154, 88, 89, 168, 92, 94, 241, 64, 172
OFFSET
1,2
LINKS
Jon Maiga, Computer-generated formulas for A328203, Sequence Machine.
FORMULA
a(n) = (n * d(n) + sigma(n)) / 2 if n odd, (n * (d(n) - d(n/2)) + sigma(n) - sigma(n/2)) / 2 if n even.
a(n) = (n * A001227(n) + A002131(n)) / 2.
a(2*n) = 2 * a(n).
From Antti Karttunen, Nov 13 2021: (Start)
The following two convolutions were found by Jon Maiga's Sequence Machine search algorithm. Both are easy to prove:
a(n) = Sum_{d|n} A003602(d) * A026741(n/d).
a(n) = Sum_{d|n} A109168(d) * A193356(n/d), where A109168(d) = A140472(d) = (d+A006519(d))/2.
(End)
MATHEMATICA
nmax = 65; CoefficientList[Series[Sum[k x^k/(1 - x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := DivisorSum[n, (n Mod[#, 2] + Boole[OddQ[n/#]] #)/2 &]; Table[a[n], {n, 1, 65}]
PROG
(Magma) a:=[]; for k in [1..65] do if IsOdd(k) then a[k]:=(k * #Divisors(k) + DivisorSigma(1, k)) / 2; else a[k]:=(k * (#Divisors(k) - #Divisors(k div 2)) + DivisorSigma(1, k) - DivisorSigma(1, k div 2)) / 2; end if; end for; a; // Marius A. Burtea, Oct 07 2019
(PARI) A328203(n) = if(n%2, (1/2)*(sigma(n)+(n*numdiv(n))), 2*A328203(n/2)); \\ Antti Karttunen, Nov 13 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 07 2019
STATUS
approved