OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
Jon Maiga, Computer-generated formulas for A328203, Sequence Machine.
FORMULA
a(n) = (n * d(n) + sigma(n)) / 2 if n odd, (n * (d(n) - d(n/2)) + sigma(n) - sigma(n/2)) / 2 if n even.
a(2*n) = 2 * a(n).
From Antti Karttunen, Nov 13 2021: (Start)
The following two convolutions were found by Jon Maiga's Sequence Machine search algorithm. Both are easy to prove:
(End)
MATHEMATICA
nmax = 65; CoefficientList[Series[Sum[k x^k/(1 - x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := DivisorSum[n, (n Mod[#, 2] + Boole[OddQ[n/#]] #)/2 &]; Table[a[n], {n, 1, 65}]
PROG
(Magma) a:=[]; for k in [1..65] do if IsOdd(k) then a[k]:=(k * #Divisors(k) + DivisorSigma(1, k)) / 2; else a[k]:=(k * (#Divisors(k) - #Divisors(k div 2)) + DivisorSigma(1, k) - DivisorSigma(1, k div 2)) / 2; end if; end for; a; // Marius A. Burtea, Oct 07 2019
(PARI) A328203(n) = if(n%2, (1/2)*(sigma(n)+(n*numdiv(n))), 2*A328203(n/2)); \\ Antti Karttunen, Nov 13 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 07 2019
STATUS
approved