login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245579
Number of odd divisors of n multiplied by n.
30
1, 2, 6, 4, 10, 12, 14, 8, 27, 20, 22, 24, 26, 28, 60, 16, 34, 54, 38, 40, 84, 44, 46, 48, 75, 52, 108, 56, 58, 120, 62, 32, 132, 68, 140, 108, 74, 76, 156, 80, 82, 168, 86, 88, 270, 92, 94, 96, 147, 150, 204, 104, 106, 216, 220, 112, 228, 116, 118, 240, 122
OFFSET
1,2
LINKS
Omar E. Pol, Comments on A245579.
FORMULA
a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = p^e * (e+1) if p>2.
a(n) = n * A001227(n).
G.f.: Sum_{k>0 odd} k * x^k / (1 - x^k)^2.
From Amiram Eldar, Dec 31 2022: (Start)
Dirichlet g.f.: zeta(s-1)^2*(1-1/2^(s-1)).
Sum_{k=1..n} a(k) ~ n^2*log(n)/4 + (4*gamma + 2*log(2) - 1)*n^2/8, where gamma is Euler's constant (A001620). (End)
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 8*x^8 + ...
For n = 10 there are two odd divisors of 10: 1 and 5, so a(10) = 2*10 = 20.
MAPLE
seq(n*numtheory:-tau(n/2^padic:-ordp(n, 2)), n=1..100); # Robert Israel, Apr 26 2017
MATHEMATICA
a[ n_] := If[ n < 1, 0, n Sum[ Mod[d, 2], {d, Divisors @ n}]];
(* Second program: *)
Table[n DivisorSum[n, 1 &, OddQ], {n, 61}] (* Michael De Vlieger, Apr 24 2017 *)
PROG
(PARI) {a(n) = if( n<1, 0, n * sumdiv(n, d, d%2))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, if( k%2, k * x^k / (1 - x^k)^2), x * O(x^n)), n))};
(PARI) {a(n) = if( n<1, 0, n * numdiv(n / 2^valuation(n, 2)))} \\ Fast when n has many divisors. Jens Kruse Andersen, Jul 26 2014
(Python)
from sympy import divisors
def a(n): return n*len(list(filter(lambda i: i%2==1, divisors(n)))) # Indranil Ghosh, Apr 24 2017
(Python)
from math import prod
from sympy import factorint
def A245579(n): return n*prod(e+1 for e in factorint(n>>(~n&n-1).bit_length()).values()) # Chai Wah Wu, Dec 31 2023
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Jul 26 2014
EXTENSIONS
Edited by N. J. A. Sloane, Apr 27 2022
STATUS
approved