login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245581
a(n) = (5 * (1 + (-1)^(1 + n)) + 2 * n^2) / 4.
1
0, 3, 2, 7, 8, 15, 18, 27, 32, 43, 50, 63, 72, 87, 98, 115, 128, 147, 162, 183, 200, 223, 242, 267, 288, 315, 338, 367, 392, 423, 450, 483, 512, 547, 578, 615, 648, 687, 722, 763, 800, 843, 882, 927, 968, 1015, 1058, 1107, 1152, 1203, 1250, 1303, 1352, 1407
OFFSET
0,2
FORMULA
a(n) = a(-n).
a(2*n+1) = A097080(n+1).
a(2*n+6) = A245578(2*n+4) = 2*A209350(2*n+4).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Jul 26 2014
G.f.: -x*(3*x^2-4*x+3) / ((x-1)^3*(x+1)). - Colin Barker, Jul 26 2014
E.g.f.: (exp(x)*x*(x+1) + 5*sinh(x))/2. - Peter Luschny, Aug 04 2014
MAPLE
A245581 := n -> (5*(1+(-1)^(1+n))+2*n^2)/4; seq(A245581(n), n=0..53);
MATHEMATICA
CoefficientList[Series[-x (3 x^2 - 4 x + 3)/((x - 1)^3 (x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 27 2014 *)
PROG
(Sage)
def A():
a, b, c, d = 0, 3, 2, 7
while True:
yield a
a, b, c, d = b, c, d, a + 2*(d - b)
A245581 = A(); [next(A245581) for n in range(54)]
(PARI) concat(0, Vec(-x*(3*x^2-4*x+3)/((x-1)^3*(x+1)) + O(x^100))) \\ Colin Barker, Jul 26 2014
(Magma) [(5*(1+(-1)^(1+n))+2*n^2) / 4: n in [0..60]]; // Vincenzo Librandi, Jul 27 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jul 26 2014
STATUS
approved