login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245580
Smallest Lucas number L(m) > L(n) that is divisible by the n-th Lucas number L(n) = A000204(n).
1
3, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, 33385282, 141422324, 599074578, 2537720636, 10749957122, 45537549124, 192900153618, 817138163596, 3461452808002, 14662949395604, 62113250390418, 263115950957276, 1114577054219522
OFFSET
1,1
COMMENTS
Property: a(1) = L(2) and a(n) = L(3*n), for n >=2, where L = A000204 are the Lucas numbers.
FORMULA
a(n) = A014448(n), n>1.
From Colin Barker, Jul 29 2014: (Start)
a(n) = (2-sqrt(5))^n+(2+sqrt(5))^n for n>1.
a(n) = 4*a(n-1)+a(n-2) for n>3.
G.f.: -x*(x^2+6*x+3) / (x^2+4*x-1). (End)
EXAMPLE
a(4) = 322 is the first Lucas number that is divisible by 7, the 4th Lucas number, so a(4) = 322. With the property a(n) = L(3*n), a(4) = A000204(12).
MATHEMATICA
Table[k=1; While[Mod[LucasL[k], LucasL[n]] !=0||LucasL[k]==LucasL[n], k++]; LucasL[k], {n, 0, 30}]
LinearRecurrence[{4, 1}, {3, 18, 76}, 30] (* Harvey P. Dale, Jan 05 2022 *)
PROG
(PARI) Vec(-x*(x^2+6*x+3)/(x^2+4*x-1) + O(x^100)) \\ Colin Barker, Jul 31 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jul 26 2014
STATUS
approved