Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 05 2022 16:32:30
%S 3,18,76,322,1364,5778,24476,103682,439204,1860498,7881196,33385282,
%T 141422324,599074578,2537720636,10749957122,45537549124,192900153618,
%U 817138163596,3461452808002,14662949395604,62113250390418,263115950957276,1114577054219522
%N Smallest Lucas number L(m) > L(n) that is divisible by the n-th Lucas number L(n) = A000204(n).
%C Property: a(1) = L(2) and a(n) = L(3*n), for n >=2, where L = A000204 are the Lucas numbers.
%H Harvey P. Dale, <a href="/A245580/b245580.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,1).
%F a(n) = A014448(n), n>1.
%F From _Colin Barker_, Jul 29 2014: (Start)
%F a(n) = (2-sqrt(5))^n+(2+sqrt(5))^n for n>1.
%F a(n) = 4*a(n-1)+a(n-2) for n>3.
%F G.f.: -x*(x^2+6*x+3) / (x^2+4*x-1). (End)
%e a(4) = 322 is the first Lucas number that is divisible by 7, the 4th Lucas number, so a(4) = 322. With the property a(n) = L(3*n), a(4) = A000204(12).
%t Table[k=1;While[Mod[LucasL[k],LucasL[n]] !=0||LucasL[k]==LucasL[n],k++];LucasL[k],{n,0,30}]
%t LinearRecurrence[{4,1},{3,18,76},30] (* _Harvey P. Dale_, Jan 05 2022 *)
%o (PARI) Vec(-x*(x^2+6*x+3)/(x^2+4*x-1) + O(x^100)) \\ _Colin Barker_, Jul 31 2014
%Y Cf. A000204, A237268, A014448 .
%K nonn,easy
%O 1,1
%A _Michel Lagneau_, Jul 26 2014