login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237268
a(1)=1; for n > 1, a(n) is the smallest F(m) > F(n) such that F(n) divides F(m), where F(k) denotes the k-th Fibonacci number.
2
1, 2, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
OFFSET
1,2
COMMENTS
a(n) > Fibonacci(n) for n > 1.
{a(n)} = {F(2*n)} union {2} minus {0,3} where F(2*n) = A001906(n) = bisection of Fibonacci sequence.
FORMULA
From Colin Barker, Jul 29 2014: (Start)
a(n) = 3*a(n-1) - a(n-2) for n>4.
G.f.: -x*(x^3 - 3*x^2 + x - 1) / (x^2 - 3*x + 1). (End)
a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5) for n > 2. - Stefano Spezia, Apr 15 2022
EXAMPLE
377 is the first Fibonacci number that is divisible by 13, the 7th Fibonacci number, so a(7) = 377.
MAPLE
A237268 := proc(n)
coeftayl((1-x+3*x^2-x^3)/(x^2-3*x+1), x=0, n);
end proc:
seq(A237268(n), n=0..30); # Wesley Ivan Hurt, Aug 02 2014
MATHEMATICA
Table[k=1; While[Mod[Fibonacci[k], Fibonacci[n]]!=0||Fibonacci[k]==Fibonacci[n], k++]; Fibonacci[k], {n, 1, 30}]
CoefficientList[Series[-(x^3 - 3 x^2 + x - 1)/(x^2 - 3 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 01 2014 *)
PROG
(PARI) Vec(-x*(x^3-3*x^2+x-1)/(x^2-3*x+1) + O(x^100)) \\ Colin Barker, Jul 29 2014
CROSSREFS
Sequence in context: A014409 A303721 A109782 * A216893 A264245 A123044
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Feb 05 2014
STATUS
approved