login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5 * (1 + (-1)^(1 + n)) + 2 * n^2) / 4.
1

%I #23 Apr 14 2023 15:28:57

%S 0,3,2,7,8,15,18,27,32,43,50,63,72,87,98,115,128,147,162,183,200,223,

%T 242,267,288,315,338,367,392,423,450,483,512,547,578,615,648,687,722,

%U 763,800,843,882,927,968,1015,1058,1107,1152,1203,1250,1303,1352,1407

%N a(n) = (5 * (1 + (-1)^(1 + n)) + 2 * n^2) / 4.

%H Vincenzo Librandi, <a href="/A245581/b245581.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(n) = a(-n).

%F a(2*n+1) = A097080(n+1).

%F a(2*n+6) = A245578(2*n+4) = 2*A209350(2*n+4).

%F a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - _Colin Barker_, Jul 26 2014

%F G.f.: -x*(3*x^2-4*x+3) / ((x-1)^3*(x+1)). - _Colin Barker_, Jul 26 2014

%F E.g.f.: (exp(x)*x*(x+1) + 5*sinh(x))/2. - _Peter Luschny_, Aug 04 2014

%p A245581 := n -> (5*(1+(-1)^(1+n))+2*n^2)/4; seq(A245581(n), n=0..53);

%t CoefficientList[Series[-x (3 x^2 - 4 x + 3)/((x - 1)^3 (x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jul 27 2014 *)

%o (Sage)

%o def A():

%o a, b, c, d = 0, 3, 2, 7

%o while True:

%o yield a

%o a, b, c, d = b, c, d, a + 2*(d - b)

%o A245581 = A(); [next(A245581) for n in range(54)]

%o (PARI) concat(0, Vec(-x*(3*x^2-4*x+3)/((x-1)^3*(x+1)) + O(x^100))) \\ _Colin Barker_, Jul 26 2014

%o (Magma) [(5*(1+(-1)^(1+n))+2*n^2) / 4: n in [0..60]]; // _Vincenzo Librandi_, Jul 27 2014

%Y Cf. A097080, A209350, A245578.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Jul 26 2014