login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194473
Decimal expansion of the area of the fourth Mandelbrot set lemniscate
1
3, 2, 7, 9, 1, 8, 5, 8, 3, 3, 3, 8, 6, 6, 8, 2, 4, 8, 1, 7, 0, 1, 1, 3, 0, 2, 0, 6, 2, 5, 2, 3, 1, 4, 6, 2, 0, 3, 7, 0, 1, 4, 3, 4, 9, 0, 0, 9, 5, 7, 5, 0, 9, 8, 0, 4, 5, 8, 6, 1, 3, 7, 5, 3, 4, 2, 0, 2, 3, 6, 3, 2, 0, 2, 2, 6, 1, 5, 0, 9, 5, 0, 4, 0, 7, 6, 5, 5, 4, 6, 0, 3, 3, 9, 9, 2, 1, 1, 9, 9, 6, 3, 3, 0, 8
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Mandelbrot Set Lemniscate
EXAMPLE
3.279185833...
MATHEMATICA
f[x_, y_] = ComplexExpand[#*Conjugate[#] &[c + (c + (c + c^2)^2)^2] /. c -> x + I*y] - 4 ; sy = Solve[f[x, y] == 0, y]; sx = Solve[f[x, y] == 0, x]; f1[x_] = y /. sy[[8]]; f2[x_] = y /. sy[[4]]; g1[y_] = x /. sx[[1]]; g2[y_] = x /. sx[[2]]; x1 = -39/20; y1 = f1[x1]; x2 = -7/4; y2 = f1[x2]; x3 = -1; y3 = f2[x3]; x4 = -1/10; y4 = f2[x4]; x5 = 107/200; y5 = f1[x5]; x6 = 10703/20000; y6 = f1[x6];
ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120];
i1 = ni[-g1[y] + g1[y1], {y, 0, y1}];
i2 = ni[f1[x], {x, x1, x2}];
i3 = ni[-g1[y] + g1[y3], {y, y2, y3}] + (x3 - x2) y2;
i4 = ni[f2[x], {x, x3, x4}] ;
i5 = ni[g2[y] - g2[y4], {y, y5, y4}] + (x5 - x4) y5 ;
i6 = ni[f1[x], {x, x5, x6}] ;
i7 = ni[ g2[y] - g2[y6], {y, 0, y6}];
area = 2 (i1 + i2 + i3 + i4 + i5 + i6 + i7);
Take[RealDigits[area][[1]], 105]
CROSSREFS
Cf. A194474 (perimeter)
Sequence in context: A245581 A054170 A106167 * A091913 A212285 A192789
KEYWORD
nonn,cons
AUTHOR
STATUS
approved