login
A194476
Number of ways to arrange 4 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.
1
0, 0, 6, 114, 879, 4284, 15729, 47565, 124803, 293733, 634293, 1277133, 2426424, 4389567, 7615062, 12739902, 20647962, 32540958, 50023656, 75205116, 110817861, 160356966, 228241167, 319998195, 442476645, 604086795, 815072895, 1087819551
OFFSET
1,3
COMMENTS
Column 4 of A194480.
LINKS
FORMULA
Empirical: a(n) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n.
Empirical g.f.: x^3*(2 + 20*x + 23*x^2 - 9*x^3 - x^4) / (1 - x)^9. - Colin Barker, May 05 2018
EXAMPLE
All solutions for 3 X 3 X 3:
....0......1......0......1......1......0
...1.1....0.1....1.1....1.1....1.0....1.1
..0.1.1..1.1.0..1.1.0..0.1.0..0.1.1..1.0.1
CROSSREFS
Sequence in context: A324669 A051228 A194132 * A059116 A121544 A274786
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 26 2011
STATUS
approved