login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059116
The sequence lambda(4,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly four starting and/or finishing points.
4
0, 0, 6, 114, 978, 6810, 43746, 271194, 1653378, 9998970, 60229986, 362088474, 2174656578, 13054316730, 78345032226, 470127588954, 2820937720578, 16926142884090, 101558406986466, 609355090964634, 3656144492925378
OFFSET
0,3
COMMENTS
For all n, a(n)=1*6^n-4*3^n+6*1^n-4*0^n+1*0^n [with 0^0=1] where powers are taken of triangular numbers and multiplied by binomial coefficients with alternating signs.
FORMULA
For n>0, a(n) = 6^n-4*3^n+6.
a(n) = 10*a(n-1)-27*a(n-2)+18*a(n-3) for n>3. G.f.: -6*x^2*(9*x+1) / ((x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Sep 14 2014
EXAMPLE
a(2)=6 since intervals a-a and b-b can be combined as a-a-b-b, a-b-a-b, a-b-b-a, b-a-b-a, b-a-a-b, or b-a-a-b.
MAPLE
A059116:=n->`if`(n<2, 0, 6^n-4*3^n+6): seq(A059116(n), n=0..20); # Wesley Ivan Hurt, Sep 14 2014
PROG
(Magma) [1*6^n-4*3^n+6*1^n-4*0^n+1*0^n: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
(PARI) concat([0, 0], Vec(-6*x^2*(9*x+1)/((x-1)*(3*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Sep 14 2014
CROSSREFS
Sequence in context: A051228 A194132 A194476 * A121544 A274786 A317172
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jan 05 2001
STATUS
approved