This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059115 Expansion of ((1-x)/(1-2*x))*exp(x/(1-x)). 4
 1, 2, 9, 58, 485, 4986, 60877, 861554, 13878153, 250854130, 5030058161, 110837000682, 2662669300909, 69270266115818, 1940260799150325, 58220372514830626, 1863293173842259217, 63356877145370671074 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS L'(n,i) are unsigned Lah numbers (Cf. A008297):L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. LINKS FORMULA Sum_{m=0..n} Sum_{i=0..n} L'(n, i)*Product_{j=1..m} (i-j+1). Given g.f. A(x), then g.f. A000522 = A(x/(1+x)). - Michael Somos, Aug 03 2006 EXAMPLE (1-x)/(1-2*x)*exp(x/(1-x)) = 1 + 2*x + 9/2*x^2 + 29/3*x^3 + 485/24*x^4 + 831/20*x^5 + ... MAPLE s := series((1-x)/(1-2*x)*exp(x/(1-x)), x, 21): for i from 0 to 20 do printf(`%d, `, i!*coeff(s, x, i)) od: PROG (PARI) {a(n)=if(n<0, 0, n!*polcoeff( (1-x)/(1-2*x)*exp(x/(1-x)+x*O(x^n)), n))} /* Michael Somos, Aug 03 2006 */ (PARI) {a(n)=local(A); if(n<0, 0, n++; A=vector(n); A[n]=1; for(k=1, n-1, A[n-k]=1; if(k>1, A[n-k+1]=A[n-k+2]); for(i=n-k+1, n, A[i]=A[i-1]+k*A[i])); A[n])} /* Michael Somos, Aug 03 2006 */ CROSSREFS Row sums of A059114, A059110, A049020, A001861, A059099, A052897. Sequence in context: A132608 A247329 A080834 * A277358 A156129 A191811 Adjacent sequences:  A059112 A059113 A059114 * A059116 A059117 A059118 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Jan 06 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:06 EDT 2019. Contains 326057 sequences. (Running on oeis4.)