login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247329
a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1).
2
1, 2, 9, 58, 475, 4666, 53116, 684762, 9833391, 155341258, 2673209561, 49717424868, 992847765988, 21172798741316, 479921234767976, 11516219861132586, 291523666535143823, 7761036379846481206, 216699016885046232187, 6330257697841339549706, 193043926318644060255531
OFFSET
0,2
LINKS
EXAMPLE
Illustration of initial terms:
a(0) = 1*1 = 1 ;
a(1) = 1*1 + 1*1 = 2 ;
a(2) = 1*2 + 2*3 + 1*1 = 9 ;
a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ;
a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ;
a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ;
a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ;
a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ...
MAPLE
f:= proc(n) local k; add((-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1), k=0..n); end proc:
map(f, [$0..30]); # Robert Israel, Aug 01 2019
MATHEMATICA
Table[Sum[(-1)^(n-k) * Binomial[n, k] * StirlingS1[n+1, k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2014 *)
PROG
(PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))}
{a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A008275 (Stirling1 numbers), A211210.
Sequence in context: A168358 A132608 A361598 * A080834 A059115 A277358
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2014
STATUS
approved