The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247329 a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1). 2
 1, 2, 9, 58, 475, 4666, 53116, 684762, 9833391, 155341258, 2673209561, 49717424868, 992847765988, 21172798741316, 479921234767976, 11516219861132586, 291523666535143823, 7761036379846481206, 216699016885046232187, 6330257697841339549706, 193043926318644060255531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..435 EXAMPLE Illustration of initial terms: a(0) = 1*1 = 1 ; a(1) = 1*1 + 1*1 = 2 ; a(2) = 1*2 + 2*3 + 1*1 = 9 ; a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ; a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ; a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ; a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ; a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ... MAPLE f:= proc(n) local k; add((-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1), k=0..n); end proc: map(f, [\$0..30]); # Robert Israel, Aug 01 2019 MATHEMATICA Table[Sum[(-1)^(n-k) * Binomial[n, k] * StirlingS1[n+1, k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2014 *) PROG (PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))} {a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*Stirling1(n+1, k+1))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A008275 (Stirling1 numbers), A211210. Sequence in context: A168358 A132608 A361598 * A080834 A059115 A277358 Adjacent sequences: A247326 A247327 A247328 * A247330 A247331 A247332 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 20:33 EDT 2024. Contains 374905 sequences. (Running on oeis4.)