login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247330
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (2 + A(x)^n)^n.
3
1, 3, 12, 75, 633, 6330, 70410, 845490, 10778385, 144342129, 2016502329, 29249703273, 439097183598, 6807064047249, 108811265375748, 1791748638013341, 30373586425246566, 529855701281428431, 9509268033398381151, 175539561089425403601, 3332349856995500161920, 65037265540406292591147
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2)/(1 - 2*x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 12*x^2 + 75*x^3 + 633*x^4 + 6330*x^5 + 70410*x^6 +...
where the g.f. satisfies following series identity:
A(x) = 1 + x*(2+A(x)) + x^2*(2+A(x)^2)^2 + x^3*(2+A(x)^3)^3 + x^4*(2+A(x)^4)^4 + x^5*(2+A(x)^5)^5 + x^6*(2+A(x)^6)^6 +...
A(x) = 1/(1-2*x) + x*A(x)/(1-2*x*A(x))^2 + x^2*A(x)^4/(1-2*x*A(x)^2)^3 + x^3*A(x)^9/(1-2*x*A(x)^3)^4 + x^4*A(x)^16/(1-2*x*A(x)^4)^5 + x^5*A(x)^25/(1-2*x*A(x)^5)^6 + x^6*A(x)^36/(1-2*x*A(x)^6)^7 +...
PROG
(PARI) {a(n, t=2)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A^(k^2)*x^k/(1 - t*A^k*x +x*O(x^n))^(k+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n, t=2)=local(A=1+x); for(i=1, n, A=sum(k=0, n, x^k * (t + A^k +x*O(x^n))^k)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A291951 A176408 A238630 * A168366 A134524 A120591
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2014
STATUS
approved