OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..150
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2)/(1 - x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 30*x^3 + 198*x^4 + 1526*x^5 + 13014*x^6 +...
where the g.f. satisfies following series identity:
A(x) = 1 + (A(x)+1)*x + (A(x)^2+1)^2*x^2 + (A(x)^3+1)^3*x^3 + (A(x)^4+1)^4*x^4 +...
A(x) = 1/(1-x) + x*A(x)/(1-x*A(x))^2 + x^2*A(x)^4/(1-x*A(x)^2)^3 + x^3*A(x)^9/(1-x*A(x)^3)^4 + x^4*A(x)^16/(1-x*A(x)^4)^5 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A^(k^2)*x^k/(1-A^k*x+x*O(x^n))^(k+1) )); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (A^k+1+x*O(x^n))^k*x^k)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2011
STATUS
approved