login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A375806
Expansion of e.g.f. 1/(1 + (log(1 - x^2))/x)^2.
1
1, 2, 6, 30, 192, 1520, 14220, 153720, 1881600, 25728192, 388402560, 6415960320, 115078138560, 2227056923520, 46247253212160, 1025696098627200, 24195406204569600, 604862279807385600, 15973029429800002560, 444299711254300661760, 12983645995613669376000
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A375798.
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k+1)! * |Stirling1(n-k,n-2*k)|/(n-k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x^2)/x)^2))
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k+1)!*abs(stirling(n-k, n-2*k, 1))/(n-k)!);
CROSSREFS
Cf. A375680.
Sequence in context: A340243 A373659 A375810 * A078700 A176719 A203000
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 29 2024
STATUS
approved