login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375804
a(n) = Lucas(n-1) * Lucas(n+1) * Fibonacci(2*n-1) * Fibonacci(2*n+1).
2
12, 40, 1365, 19448, 381276, 6615103, 120241980, 2147070680, 38600066517, 692153278024, 12423591148332, 222908960952575, 4000098954110700, 71777766990248968, 1288007282149222101, 23112301389881302808, 414733773612913239420, 7442093184423393874495, 133542960264663589170972
OFFSET
1,1
LINKS
Hideyuki Ohtskua, proposer, Problem H-944, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 3 (2024), p. 266.
FORMULA
a(n) = A292696(n) * A064170(n+2).
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(5) - 2)/ 4 = A204188 - 1/2 (Ohtskua, 2024).
G.f.: -x^2*(-20+65*x+195*x^2-84*x^3-13*x^4+x^5)/ ( (1+x) *(x^2-3*x+1) *(x^2+7*x+1) *(x^2-18*x+1) ). - R. J. Mathar, Aug 30 2024
MATHEMATICA
a[n_] := LucasL[n-1] * LucasL[n+1] * Fibonacci[2*n-1] * Fibonacci[2*n+1]; Array[a, 20]
PROG
(PARI) lucas(n) = fibonacci(n-1) + fibonacci(n+1);
a(n) = lucas(n-1) * lucas(n+1) * fibonacci(2*n-1) * fibonacci(2*n+1);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 29 2024
STATUS
approved