login
A204188
Decimal expansion of sqrt(5)/4.
3
5, 5, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7
OFFSET
0,1
COMMENTS
Equals Product_{n>=1} (1 - 1/A000032(2^n)).
Essentially the same as A019863 and A019827. - R. J. Mathar, Jan 16 2012
The value is the distance of the W point of the Wigner-Seitz cell of the body-centered cubic lattice (that is the Brioullin zone of the face-centered cubic lattice) to its four nearest neighbors. Let the points of the simple cubic lattice be at (1,0,0), (0,1,0), (1,0,0) etc and the point in the cube center at (1/2, 1/2, 1/2). Then W is at (0, 1/4, 1/2) [or any of the 24 symmetry related positions like (0, 3/4, 1/2), (0, 1/2, 1/4) etc.], and the four lattice points closest to W are at (-1/2, 1/2, 1/2), (0,0,0), (1/2, 1/2, 1/2) and (0,0,1). - R. J. Mathar, Aug 19 2013
LINKS
J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.
Y. Tachiya, Transcendence of certain infinite products, J. Number Theory 125 (2007), 182-200.
Wikipedia, Brillouin zone
FORMULA
Equals sqrt(5)/4 = (-1 + 2*phi)/4, with the golden section phi from A001622.
Equals 5*A020837.
EXAMPLE
0.5590169943749474241022934171828190588601545899028814310677243113526302...
MAPLE
evalf(sqrt(5)/4);
MATHEMATICA
RealDigits[Sqrt[5]/4, 10, 100][[1]] (* Amiram Eldar, Dec 04 2018 *)
PROG
(PARI) sqrt(5)/4 \\ Charles R Greathouse IV, Apr 21 2016
CROSSREFS
Sequence in context: A081287 A303715 A377285 * A347682 A334383 A019843
KEYWORD
nonn,cons
AUTHOR
Jonathan Sondow, Jan 14 2012
STATUS
approved