login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251429
Number of length 2+2 0..n arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.
1
12, 41, 116, 237, 432, 725, 1128, 1641, 2316, 3145, 4148, 5357, 6776, 8413, 10328, 12489, 14924, 17689, 20764, 24149, 27928, 32061, 36568, 41513, 46868, 52641, 58924, 65653, 72856, 80621, 88896, 97681, 107092, 117057, 127596, 138805, 150624, 163061
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) + a(n-10) - a(n-11).
Empirical for n mod 12 = 0: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (97/54)
Empirical for n mod 12 = 2: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (43/27)
Empirical for n mod 12 = 3: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (11/2)
Empirical for n mod 12 = 4: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (35/27)
Empirical for n mod 12 = 5: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (113/54)
Empirical for n mod 12 = 6: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (313/54)
Empirical for n mod 12 = 8: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (43/27)
Empirical for n mod 12 = 9: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (3/2)
Empirical for n mod 12 = 10: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (35/27)
Empirical for n mod 12 = 11: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (329/54)
Empirical g.f.: x*(12 + 29*x + 75*x^2 + 97*x^3 + 125*x^4 + 114*x^5 + 98*x^6 + 55*x^7 + 27*x^8 + x^9 - x^10) / ((1 - x)^4*(1 + x)*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, Nov 29 2018
EXAMPLE
Some solutions for n=10:
..1....1....5....1....6....1....1....0....5....4....8....2....7....8....0....6
..7....8...10....7....4....6....3....3....6....6....3....6....2....6....6....7
.10....3....7....3....3...10....5....1....3....7....9....5...10....6....2....1
..7....7....8....9....6....1....1....4....5....4....1....9....7....8....5....9
CROSSREFS
Row 2 of A251428.
Sequence in context: A330826 A222806 A375804 * A114072 A244793 A218712
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 02 2014
STATUS
approved