|
|
A330826
|
|
Numbers of the form 2^((2^n)+1)*F_n, where F_n is a Fermat prime, A019434.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also numbers with power-spectral basis {F_n^2, (F_n-1)^2}.
The first factor of a(n) is 2^A000051(n). The first element of the power-spectral basis of a(n) is A001146, and the second element is A330828.
|
|
LINKS
|
Table of n, a(n) for n=1..5.
|
|
FORMULA
|
a(n) =2^A000051(n)*A019434(n).
|
|
EXAMPLE
|
a(2) = 2^(2+1)*5 = 40, and the spectral basis of 40 is {25,16}, consisting of primes and powers.
|
|
MAPLE
|
F := n -> 2^(2^n)+1;
a := proc(n) if isprime(F(n)) then return 2^((2^n)+1)*F(n) fi; end;
|
|
CROSSREFS
|
Cf. A001146, A000215, A019434, A000051, A330828.
Sequence in context: A180093 A137389 A228203 * A222806 A251429 A114072
Adjacent sequences: A330823 A330824 A330825 * A330827 A330828 A330829
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Walter Kehowski, Jan 06 2020
|
|
STATUS
|
approved
|
|
|
|