login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330829 Numbers of the form 2^(2*(2^n)+1)*F_n^2, where F_n is a Fermat prime A019434. 3
72, 800, 147968, 8657174528, 36894614055915880448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Also numbers with power-spectral basis {(F_n-2)^2*F_n^2,(F_n^2-1)^2}.

The first element of the power-spectral basis of a(n) is A330830, and the second element is A330831. The first factor of a(n) is A000051(n) and the second factor is A330828.

LINKS

Table of n, a(n) for n=0..4.

FORMULA

a(n) = 2^(2*(2^n)+1)*(2^(2^n)+1)^2.

EXAMPLE

a(0) = 2^(2+1)*(2+1)^2 = 72, and the spectral basis is {(3-2)^2*3^2, (3^2-1)^2} = {9,64}, consisting of powers.

MAPLE

F := proc(n) return 2^(2^n)+1 end;

G := proc(n) return 2^(2*(2^n)+1) end;

a := proc(n) if isprime(F(n)) then return G(n)*F(n)^2 fi; end;

[seq(a(n), n=0..4)];

CROSSREFS

Cf. A000215, A001146, A019434, A000051, A330828, A330830, A330831.

Sequence in context: A086579 A113855 A082949 * A240983 A210627 A019562

Adjacent sequences:  A330826 A330827 A330828 * A330830 A330831 A330832

KEYWORD

nonn

AUTHOR

Walter Kehowski, Jan 06 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 22:26 EDT 2020. Contains 336464 sequences. (Running on oeis4.)