login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247331
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (3 + A(x)^n)^n.
1
1, 4, 20, 148, 1492, 18068, 244628, 3582612, 55783252, 913716116, 15633525524, 278068128660, 5124595687636, 97633146977428, 1919960496128660, 38930551809036436, 813367272118600276, 17501331733030883732, 387693438148021391892, 8839040069648710445460
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2)/(1 - 3*x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 20*x^2 + 148*x^3 + 1492*x^4 + 18068*x^5 +...
where the g.f. satisfies following series identity:
A(x) = 1 + x*(3+A(x)) + x^2*(3+A(x)^2)^2 + x^3*(3+A(x)^3)^3 + x^4*(3+A(x)^4)^4 + x^5*(3+A(x)^5)^5 + x^6*(3+A(x)^6)^6 +...
A(x) = 1/(1-3*x) + x*A(x)/(1-3*x*A(x))^2 + x^2*A(x)^4/(1-3*x*A(x)^2)^3 + x^3*A(x)^9/(1-3*x*A(x)^3)^4 + x^4*A(x)^16/(1-3*x*A(x)^4)^5 + x^5*A(x)^25/(1-3*x*A(x)^5)^6 + x^6*A(x)^36/(1-3*x*A(x)^6)^7 +...
PROG
(PARI) {a(n, t=3)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A^(k^2)*x^k/(1 - t*A^k*x +x*O(x^n))^(k+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n, t=3)=local(A=1+x); for(i=1, n, A=sum(k=0, n, x^k * (t + A^k +x*O(x^n))^k)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A117887 A082988 A001171 * A167018 A094070 A335627
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 14 2014
STATUS
approved