login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} x^n * (3 + A(x)^n)^n.
1

%I #3 Sep 14 2014 21:34:36

%S 1,4,20,148,1492,18068,244628,3582612,55783252,913716116,15633525524,

%T 278068128660,5124595687636,97633146977428,1919960496128660,

%U 38930551809036436,813367272118600276,17501331733030883732,387693438148021391892,8839040069648710445460

%N G.f. satisfies: A(x) = Sum_{n>=0} x^n * (3 + A(x)^n)^n.

%F G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2)/(1 - 3*x*A(x)^n)^(n+1).

%e G.f.: A(x) = 1 + 4*x + 20*x^2 + 148*x^3 + 1492*x^4 + 18068*x^5 +...

%e where the g.f. satisfies following series identity:

%e A(x) = 1 + x*(3+A(x)) + x^2*(3+A(x)^2)^2 + x^3*(3+A(x)^3)^3 + x^4*(3+A(x)^4)^4 + x^5*(3+A(x)^5)^5 + x^6*(3+A(x)^6)^6 +...

%e A(x) = 1/(1-3*x) + x*A(x)/(1-3*x*A(x))^2 + x^2*A(x)^4/(1-3*x*A(x)^2)^3 + x^3*A(x)^9/(1-3*x*A(x)^3)^4 + x^4*A(x)^16/(1-3*x*A(x)^4)^5 + x^5*A(x)^25/(1-3*x*A(x)^5)^6 + x^6*A(x)^36/(1-3*x*A(x)^6)^7 +...

%o (PARI) {a(n,t=3)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A^(k^2)*x^k/(1 - t*A^k*x +x*O(x^n))^(k+1) )); polcoeff(A, n)}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) {a(n,t=3)=local(A=1+x); for(i=1, n, A=sum(k=0, n, x^k * (t + A^k +x*O(x^n))^k)); polcoeff(A, n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A247330, A203000.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 14 2014