The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094070 a(n) = A000085(n) * A000110(n). 3
1, 4, 20, 150, 1352, 15428, 203464, 3162960, 55405140, 1101298600, 24222234720, 590544046744, 15715973012248, 456341011254560, 14312979247985120, 484253161428902192, 17550722413456774848, 680244627812139042016, 28053748582811428182080, 1228896901162555453603712 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Coefficients arising in combinatorial field theory.
REFERENCES
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.
LINKS
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering
A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson and A. I. Solomon, A product formula and combinatorial field theory
FORMULA
a(n) = (i/sqrt(2))^(n+1)*H(n+1, -i/sqrt(2))*Bell(n+1), where i=sqrt(-1), H(n, x) are the Hermite polynomials and Bell(n) are the Bell numbers. - Emeric Deutsch, Nov 22 2004
MAPLE
with(combinat): with(orthopoly): seq((I/sqrt(2))^(n+1)*H(n+1, -I/sqrt(2))*bell(n+1), n=0..17); # Emeric Deutsch, Nov 22 2004
MATHEMATICA
a[n_] := Sum[StirlingS1[n+1, k] 2^k BellB[k, 1/2], {k, 0, n+1}] BellB[n+1];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
Sequence in context: A001171 A247331 A167018 * A335627 A119022 A006682
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 01 2004
EXTENSIONS
More terms from Ralf Stephan, Oct 14 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 16:46 EDT 2024. Contains 373432 sequences. (Running on oeis4.)