OFFSET
1,3
COMMENTS
LINKS
E. Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985.
FORMULA
T(n, k) = n!*[(k+1)fibonacci(k+1)-fibonacci(k+2)]/(k+1)! for 1<=k<=n-1; T(1, 1)=1; T(n, n)=fibonacci(n+1).
EXAMPLE
T(4,3)=7 because the permutations 4132, 3124, 2413, 4213, 2314 and 3214 do not avoid all three patterns 123, 132 and 213, but their initial segments of length three, namely 413, 312, 241, 421, 231 and 321, do.
Triangle begins:
1;
0,2;
0,3,3;
0,12,7,5;
0,60,35,17,8;
0,360,210,102,35,13;
0,2520,1470,714,245,70,21;
MAPLE
with(combinat): T:=proc(n, k) if n=1 and k=1 then 1 elif n=1 then 0 elif k=1 then 0 elif k=n then fibonacci(n+1) elif k>0 and k<n then n!*((k+1)*fibonacci(k+1)-fibonacci(k+2))/(k+1)! else 0 fi end: seq(seq(T(n, k), k=1..n), n=1..11);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, May 31 2004
STATUS
approved