login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094065
Asymptotic form for prime.
1
0, 2, 5, 7, 10, 13, 16, 19, 22, 26, 29, 32, 36, 39, 42, 46, 49, 53, 57, 60, 64, 67, 71, 75, 78, 82, 86, 90, 93, 97, 101, 105, 109, 113, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 201, 205, 209, 213, 217, 221
OFFSET
1,2
COMMENTS
This sequence results from a solution to a particular Laplacian of a linear perturbation associated with a Gaussian Dirichlet L-function used in a zeta zeros quantum Hamiltonian. The associated wave equation is: Psi(n, s) = (1+i)*exp(k_2 + k_1*s - s^2/(4*n)), where k_1 = (-4 + log(n))/4 and k_2 = n*log(n).
LINKS
FORMULA
a(n) = floor(Re( n*(2 + log(n)/2 - sqrt((2*Pi + i*n)/(Pi*n))) )).
MATHEMATICA
Table[Floor[Re[n*(2 +Log[n]/2 -Sqrt[I/Pi+2/n])]], {n, 1, 70}]
PROG
(PARI) {a(n) = floor( real(n*(2 + log(n)/2 - sqrt((2*Pi + I*n)/(Pi*n))) ))}; \\ G. C. Greubel, Mar 18 2019
(Magma) C<i> := ComplexField(); [Floor(Re( n*(2 + Log(n)/2 - Sqrt((2*Pi(C) + i*n)/(Pi(C)*n))) )): n in [1..70]]; // G. C. Greubel, Mar 18 2019
(Sage) [floor( (n*(2 + log(n)/2 - sqrt((2*pi + i*n)/(pi*n)))).real()) for n in (1..70)] # G. C. Greubel, Mar 18 2019
CROSSREFS
Sequence in context: A067008 A376959 A189757 * A073593 A364451 A241510
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 31 2004
EXTENSIONS
Edited by G. C. Greubel, Mar 18 2019
STATUS
approved