login
A376959
a(n) = least k such that (2n Pi/3)^(2k+1)/(2k+1)! < 1.
10
1, 2, 5, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 35, 38, 41, 44, 47, 50, 52, 55, 58, 61, 64, 67, 69, 72, 75, 78, 81, 84, 86, 89, 92, 95, 98, 101, 104, 106, 109, 112, 115, 118, 121, 123, 126, 129, 132, 135, 138, 140, 143, 146, 149, 152, 155, 157, 160, 163, 166
OFFSET
0,2
COMMENTS
The numbers (2n Pi/3)^(2k+1)/(2k+1)! are the coefficients in the Maclaurin series for sin x when x = 2Pi/3. If m>a(n), then (n 2Pi/3)^(2k+1)/(2k+1)! < 1.
MATHEMATICA
a[n_] := Select[Range[z], (2n Pi/3)^(2 # + 1)/(2 # + 1)! < 1 &, 1]
Flatten[Table[a[n], {n, 0, 100}]]
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 17 2024
STATUS
approved