OFFSET
1,2
COMMENTS
A version of the coupon collector's problem (A178923).
REFERENCES
W. Feller, An Introduction to Probability Theory and Its Applications: Volume 1.
S. Ross, A First Course in Probability, Prentice-Hall, 3rd ed., Chapter 7, Example 3g.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..1000
P. Erdős and A. Rényi, On a classical problem of probability theory, Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 1961
Sci.math.probability newsgroup, Collecting a deck of cards on the street, Aug 2002.
Math.stackexchange, The smallest number of boxes to buy to have probability at least 1/2 of collecting all pictures, Oct 2014.
FORMULA
a(n) seems to be asymptotic to n*(log(n)+c) with c=0.3(6)...and maybe c=1/e. - Benoit Cloitre, Sep 07 2002
c likely to be closer to -log(log(2)) about 0.3665. - Henry Bottomley, Jun 01 2022
MATHEMATICA
f[n_] := Block[{k = 1}, While[2StirlingS2[k, n]*n!/n^k < 1, k++ ]; k]; Table[ f[n], {n, 60}]
PROG
(PARI) S2(n, k) = if(k<1 || k>n, 0, if(n==1, 1, k*S2(n-1, k)+S2(n-1, k-1))); a(n)=if(n<0, 0, k=1; while( 2*S2(k, n)*n!/n^k<1, k++); k)
(PARI) a(n)=v=vector(n+1); k=1; v[n]=1.0; while(v[1]<0.5, k++; for(i=1, n, v[i]=v[i]*(n+1-i)/n+v[i+1]*i/n)); k \\ Faster program. Jens Kruse Andersen, Aug 03 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 28 2002
STATUS
approved