login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178923
Rectangular array T(m,k)= StirlingS2(k-1,m-1)*m! (The Coupon Collectors Problem)
2
1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 18, 0, 0, 0, 0, 2, 42, 24, 0, 0, 0, 0, 2, 90, 144, 0, 0, 0, 0, 0, 2, 186, 600, 120, 0, 0, 0, 0, 0, 2, 378, 2160, 1200, 0, 0, 0, 0, 0
OFFSET
1,5
COMMENTS
T(m,k) is the number of functions f:{1,2,...}->{1,2,...,m} such that the image of f[{1,2,...,k}] is {1,2,...,m} but the image of f[{1,2,...,k-1}] is not.
T(m,k)/m^k is the probability that a collector of m different objects will require exactly k trials (uniform random selection with replacement) to complete the collection.
FORMULA
O.g.f. for row m: m!*x^m/Product_{i=1...m-1}1-i*x.
EXAMPLE
1 0 0 0 0 0 0 0 0 ...
0 2 2 2 2 2 2 2 2 ...
0 0 6 18 42 90 186 378 762 ...
0 0 0 24 144 600 2160 7224 23184 ...
0 0 0 0 120 1200 7800 42000 204120 ...
0 0 0 0 0 720 10800 100800 756000 ...
0 0 0 0 0 0 5040 105840 1340640 ...
0 0 0 0 0 0 0 40320 1128960 ...
0 0 0 0 0 0 0 0 362880 ...
MAPLE
A178923 := proc(m, k)
combinat[stirling2](k-1, m-1)*m! ;
end proc:
seq(seq(A178923(m, d-m), m=1..d-1), d=2..15) ; # R. J. Mathar, Jan 19 2024
MATHEMATICA
Table[Table[StirlingS2[k - 1, m - 1] m!, {k, 1, 10}], {m, 1, 10}] // Grid
CROSSREFS
Cf. A068293 (row m=3), A000142 (diagonal), A001804 (subdiagonal).
Sequence in context: A066448 A108497 A108498 * A242609 A226225 A329265
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 29 2010
STATUS
approved