login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178920
Expansion of e.g.f. A(x), where A(x)=exp(x*A(x)+x^2*A(x)^2)
0
1, 4, 39, 616, 13445, 374976, 12738523, 510366592, 23561390889, 1231594508800, 71902556218031, 4637321353737216, 327439395476545261, 25123251004703358976, 2081326422827575699875
OFFSET
0,2
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = (n-1)!*Sum_{i=0..n-1} binomial(n+i,n-i-1)*n^i/i!. - corrected by Vaclav Kotesovec, Jan 26 2014
a(n) ~ c * n^n * ( exp(m-1) * (1+m)^(1+m) / (m^(3*m) * 2^(2*m) * (1-m)^(1-m)) )^n, where m = 1/12*(-1 + (215 - 12*sqrt(321))^(1/3) + (215 + 12*sqrt(321))^(1/3)) = 0.5566930950324... is the root of the equation m^2*(1+4*m)=1, and c = 2.194433179699246977948075450550764549... - Vaclav Kotesovec, Jan 26 2014
MATHEMATICA
a[n_] := (n+1)!*HypergeometricPFQ[ {-n, n+2}, {1, 3/2}, -(n+1)/4]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 01 2013 *)
CROSSREFS
Sequence in context: A365010 A024055 A361544 * A066399 A065760 A132612
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 29 2010
STATUS
approved