Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 30 2022 10:03:05
%S 1,4,39,616,13445,374976,12738523,510366592,23561390889,1231594508800,
%T 71902556218031,4637321353737216,327439395476545261,
%U 25123251004703358976,2081326422827575699875
%N Expansion of e.g.f. A(x), where A(x)=exp(x*A(x)+x^2*A(x)^2)
%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties </a>, arXiv:1103.2582 [math.CO], 2011-2013.
%F a(n) = (n-1)!*Sum_{i=0..n-1} binomial(n+i,n-i-1)*n^i/i!. - corrected by _Vaclav Kotesovec_, Jan 26 2014
%F a(n) ~ c * n^n * ( exp(m-1) * (1+m)^(1+m) / (m^(3*m) * 2^(2*m) * (1-m)^(1-m)) )^n, where m = 1/12*(-1 + (215 - 12*sqrt(321))^(1/3) + (215 + 12*sqrt(321))^(1/3)) = 0.5566930950324... is the root of the equation m^2*(1+4*m)=1, and c = 2.194433179699246977948075450550764549... - _Vaclav Kotesovec_, Jan 26 2014
%t a[n_] := (n+1)!*HypergeometricPFQ[ {-n, n+2}, {1, 3/2}, -(n+1)/4]; Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Mar 01 2013 *)
%K nonn
%O 0,2
%A _Vladimir Kruchinin_, Dec 29 2010