login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132612
Column 1 of triangle A132610.
5
1, 1, 4, 39, 648, 15465, 483240, 18685905, 861282832, 46085893011, 2807152825020, 191731595897600, 14510053796849640, 1205013817282706730, 108941005329522201360, 10650027832902977866245, 1119401271751383414197280, 125879457463215695125460535
OFFSET
0,3
COMMENTS
Triangle T=A132610 is generated by even matrix powers of itself such that row n+1 of T = row n of T^(2n) with appended '1' for n>=0 with T(0,0)=1.
FORMULA
a(n) is divisible by n for n>0; a(n)/n = A132614(n).
a(n) = [x^(n-1)] (1+x)^(n*(n+1)) / F(x) for n>0, where F(x) is the g.f. of A304192.
PROG
(PARI) {a(n)=local(A=vector(n+2), p); A[1]=1; for(j=1, n-1, p=n^2-(n-j)^2; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A=Vec((Polrev(A)+x*O(x^p))/(1-x)); A[p+1]}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=Vec(Ser(A)/(1-x)^(2*(#A)-1)); A=concat(A, A[#A])); A[#A]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A132610 (triangle); other columns: A132611, A132613; A132614.
Cf. A304192.
Sequence in context: A178920 A066399 A065760 * A129463 A299426 A188418
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 23 2007
STATUS
approved