login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066399
From reversion of e.g.f. for squares.
3
0, 1, -4, 39, -616, 13505, -379296, 12995983, -525688192, 24519144609, -1295527513600, 76481653648631, -4989249262503936, 356408413864589281, -27670449142629400576, 2319870547729387929375, -208886312501433616531456, 20104397299878424990749377
OFFSET
0,3
FORMULA
a(n+1) = (-1)^n*(n)! * Sum_{m=0..n} (n+1)^m/m! * binomial(2*n-m,n). - Vladimir Kruchinin, Feb 22 2011
For n>=2, a(n) = (-2)^(n-1)*(2n-3)!!*hypergeom([1-n], [2-2n], n), where n!! denotes the double factorial A006882. - Vladimir Reshetnikov, Oct 16 2015
E.g.f. g(x) satisfies (g(x) + g(x)^2)*exp(g(x)) = x. - Robert Israel, Oct 16 2015
a(n) ~ (-1)^(n-1) * (2 + sqrt(5))^(n-1/2) * n^(n-1) / (5^(1/4) * exp((sqrt(5) - 1)*n/2)). - Vaclav Kotesovec, Oct 18 2015
MAPLE
read transforms; add(n^2*x^n/n!, n=1..30); series(%, x, 31): seriestoseries(%, 'revogf'); SERIESTOLISTMULT(%);
with(powseries):powcreate(t(n)=n^2/n!):seq(n!*coeff(tpsform(reversion(t), x, 19), x, n), n=0..18); spec:=[A, {A=Prod(Z, Set(A), Set(B)), B=Cycle(A)}, labeled]; seq(combstruct[count](spec, size=n), n=0..18); # Vladeta Jovovic, May 29 2007
a := n -> `if`(n<2, n, (-2)^(n-1)*doublefactorial(2*n-3)*hypergeom([1-n], [2-2*n], n)): seq(simplify(a(n)), n=0..18); # Peter Luschny, Oct 16 2015
MATHEMATICA
A066399[0] = 0; A066399[1] = 1; A066399[n_] := (-2)^(n - 1) (2 n - 3)!! Hypergeometric1F1[1 - n, 2 - 2 n, n]; Table[A066399[n], {n, 0, 10}] (* Vladimir Reshetnikov, Oct 16 2015 *)
PROG
(PARI) a(n) = if(n==0, 0, (-1)^(n-1)*(n-1)! * sum(k=0, n-1, (n)^k/k! * binomial(2*n-2-k, n-1))) \\ Altug Alkan, Oct 16 2015
CROSSREFS
Cf. A295188.
Sequence in context: A024055 A361544 A178920 * A065760 A132612 A129463
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 25 2001
STATUS
approved