OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..300
Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
FORMULA
a(n+1) = (-1)^n*(n)! * Sum_{m=0..n} (n+1)^m/m! * binomial(2*n-m,n). - Vladimir Kruchinin, Feb 22 2011
For n>=2, a(n) = (-2)^(n-1)*(2n-3)!!*hypergeom([1-n], [2-2n], n), where n!! denotes the double factorial A006882. - Vladimir Reshetnikov, Oct 16 2015
E.g.f. g(x) satisfies (g(x) + g(x)^2)*exp(g(x)) = x. - Robert Israel, Oct 16 2015
a(n) ~ (-1)^(n-1) * (2 + sqrt(5))^(n-1/2) * n^(n-1) / (5^(1/4) * exp((sqrt(5) - 1)*n/2)). - Vaclav Kotesovec, Oct 18 2015
MAPLE
read transforms; add(n^2*x^n/n!, n=1..30); series(%, x, 31): seriestoseries(%, 'revogf'); SERIESTOLISTMULT(%);
with(powseries):powcreate(t(n)=n^2/n!):seq(n!*coeff(tpsform(reversion(t), x, 19), x, n), n=0..18); spec:=[A, {A=Prod(Z, Set(A), Set(B)), B=Cycle(A)}, labeled]; seq(combstruct[count](spec, size=n), n=0..18); # Vladeta Jovovic, May 29 2007
a := n -> `if`(n<2, n, (-2)^(n-1)*doublefactorial(2*n-3)*hypergeom([1-n], [2-2*n], n)): seq(simplify(a(n)), n=0..18); # Peter Luschny, Oct 16 2015
MATHEMATICA
A066399[0] = 0; A066399[1] = 1; A066399[n_] := (-2)^(n - 1) (2 n - 3)!! Hypergeometric1F1[1 - n, 2 - 2 n, n]; Table[A066399[n], {n, 0, 10}] (* Vladimir Reshetnikov, Oct 16 2015 *)
PROG
(PARI) a(n) = if(n==0, 0, (-1)^(n-1)*(n-1)! * sum(k=0, n-1, (n)^k/k! * binomial(2*n-2-k, n-1))) \\ Altug Alkan, Oct 16 2015
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 25 2001
STATUS
approved