login
A066402
From expansion of Belyi function for dodecahedron.
4
0, 1, 739, 349247, 135081772, 46592981880, 14921201253592, 4536057410542618, 1326832753715385794, 376757242809990931884, 104488934104327921610570, 28428461728083557062643114, 7612584440278089046630434316, 2011372004697171339782546237013
OFFSET
0,3
LINKS
N. Magot and A. Zvonkin, Belyi functions for Archimedian solids, Discrete Math., 217 (2000), 249-271.
Index entries for linear recurrences with constant coefficients, signature (684, -157434, 12527460, -77460495, 130689144, 33211924, -130689144, -77460495, -12527460, -157434, -684, -1).
FORMULA
The Belyi function is 1728*z^5*(z^10-11*z^5-1)^5/(z^20+228*z^15+494*z^10-228*z^5+1)^3.
G.f.: x*(1+11*x-x^2)^5 / (1-228*x+494*x^2+228*x^3+x^4)^3. - Colin Barker, Jan 12 2016
PROG
(PARI) concat(0, Vec(x*(1+11*x-x^2)^5/(1-228*x+494*x^2+228*x^3+x^4)^3 + O(x^20))) \\ Colin Barker, Jan 12 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 25 2001
STATUS
approved