login
From expansion of Belyi function for dodecahedron.
4

%I #8 Jan 12 2016 15:30:38

%S 0,1,739,349247,135081772,46592981880,14921201253592,4536057410542618,

%T 1326832753715385794,376757242809990931884,104488934104327921610570,

%U 28428461728083557062643114,7612584440278089046630434316,2011372004697171339782546237013

%N From expansion of Belyi function for dodecahedron.

%H Colin Barker, <a href="/A066402/b066402.txt">Table of n, a(n) for n = 0..400</a>

%H N. Magot and A. Zvonkin, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00266-6">Belyi functions for Archimedian solids</a>, Discrete Math., 217 (2000), 249-271.

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (684, -157434, 12527460, -77460495, 130689144, 33211924, -130689144, -77460495, -12527460, -157434, -684, -1).

%F The Belyi function is 1728*z^5*(z^10-11*z^5-1)^5/(z^20+228*z^15+494*z^10-228*z^5+1)^3.

%F G.f.: x*(1+11*x-x^2)^5 / (1-228*x+494*x^2+228*x^3+x^4)^3. - _Colin Barker_, Jan 12 2016

%o (PARI) concat(0, Vec(x*(1+11*x-x^2)^5/(1-228*x+494*x^2+228*x^3+x^4)^3 + O(x^20))) \\ _Colin Barker_, Jan 12 2016

%Y Cf. A066405, A066403, A066404.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Dec 25 2001