login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295188
Decimal expansion of phi^3 * exp(1 - 1/phi), where phi is the golden ratio.
3
6, 2, 0, 6, 5, 2, 7, 0, 3, 8, 3, 9, 7, 1, 6, 3, 7, 3, 1, 0, 0, 0, 7, 4, 0, 5, 3, 2, 1, 8, 6, 5, 8, 0, 5, 8, 5, 2, 7, 8, 0, 5, 2, 8, 7, 0, 8, 4, 7, 9, 6, 2, 0, 2, 2, 9, 2, 6, 0, 7, 5, 3, 9, 6, 8, 7, 9, 0, 5, 8, 4, 9, 3, 7, 5, 6, 1, 4, 1, 8, 4, 4, 4, 3, 5, 6, 3, 1, 1, 2, 2, 6, 1, 0, 2, 3, 0, 5, 0, 6, 3, 7, 0, 2, 4
OFFSET
1,1
FORMULA
Equals ((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))).
Equals limit n->infinity (A066399(n)/n!)^(1/n).
Equals limit n->infinity (A239761(n)/n!)^(1/n).
Equals limit n->infinity (A295183(n)/n!)^(1/n).
EXAMPLE
6.206527038397163731000740532186580585278052870847962022926...
MAPLE
evalf(((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))), 120);
MATHEMATICA
RealDigits[GoldenRatio^3 * Exp[1 - 1/GoldenRatio], 10, 110][[1]]
PROG
(PARI) phi=(sqrt(5)+1)/2; phi^3*exp(2-phi) \\ Charles R Greathouse IV, Nov 21 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 16 2017
STATUS
approved