login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304192
G.f. A(x) satisfies: [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
8
1, 2, 7, 72, 1224, 29184, 892074, 33144288, 1445847756, 72291575784, 4070550314292, 254674699992768, 17518238545282080, 1313558965998605568, 106608039857256267192, 9309469431887521270848, 870250987085629018699728, 86703492688056304091302944, 9171254392641669833788501488, 1026466161170552167031522911104
OFFSET
0,2
COMMENTS
Note that: [x^n] (1+x)^(n*k) / G(x) = 0 for n>0 holds when G(x) = (1+x)/(1 - (k-1)*x) given some fixed k ; this sequence explores the case where k varies with n.
LINKS
FORMULA
A132612(n+1) = [x^n] (1+x)^((n+1)*(n+2)) / A(x) for n>0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 72*x^3 + 1224*x^4 + 29184*x^5 + 892074*x^6 + 33144288*x^7 + 1445847756*x^8 + 72291575784*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^(n*(n+1)) / A(x) begins:
n=0: [1, -2, -3, -52, -955, -24246, -771113, -29428232, ...];
n=1: [1, 0, -6, -60, -1062, -26208, -820560, -30994704, ...];
n=2: [1, 4, 0, -80, -1337, -30840, -932010, -34438500, ...];
n=3: [1, 10, 39, 0, -1722, -39996, -1138680, -40521096, ...];
n=4: [1, 18, 147, 648, 0, -50832, -1503546, -50844384, ...];
n=5: [1, 28, 372, 3048, 15465, 0, -1898490, -67990260, ...];
n=6: [1, 40, 774, 9580, 83248, 483240, 0, -85539792, ...];
n=7: [1, 54, 1425, 24420, 303363, 2844270, 18685905, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 4, 39, 648, 15465, 483240, 18685905, 861282832, 46085893011, ...]
yields A132612, column 1 of triangle A132610.
Related triangular matrix T = A132610 begins:
1;
1, 1;
2, 1, 1;
14, 4, 1, 1;
194, 39, 6, 1, 1;
4114, 648, 76, 8, 1, 1;
118042, 15465, 1510, 125, 10, 1, 1;
4274612, 483240, 41121, 2908, 186, 12, 1, 1;
186932958, 18685905, 1424178, 89670, 4970, 259, 14, 1, 1; ...
in which row n+1 of T = row n of matrix power T^(2*n) with appended '1' for n>=0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m-1))/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 07 2018
STATUS
approved