Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 09 2018 00:33:26
%S 1,2,7,72,1224,29184,892074,33144288,1445847756,72291575784,
%T 4070550314292,254674699992768,17518238545282080,1313558965998605568,
%U 106608039857256267192,9309469431887521270848,870250987085629018699728,86703492688056304091302944,9171254392641669833788501488,1026466161170552167031522911104
%N G.f. A(x) satisfies: [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
%C Note that: [x^n] (1+x)^(n*k) / G(x) = 0 for n>0 holds when G(x) = (1+x)/(1 - (k-1)*x) given some fixed k ; this sequence explores the case where k varies with n.
%H Paul D. Hanna, <a href="/A304192/b304192.txt">Table of n, a(n) for n = 0..300</a>
%F A132612(n+1) = [x^n] (1+x)^((n+1)*(n+2)) / A(x) for n>0.
%e G.f.: A(x) = 1 + 2*x + 7*x^2 + 72*x^3 + 1224*x^4 + 29184*x^5 + 892074*x^6 + 33144288*x^7 + 1445847756*x^8 + 72291575784*x^9 + ...
%e ILLUSTRATION OF DEFINITION.
%e The table of coefficients of x^k in (1+x)^(n*(n+1)) / A(x) begins:
%e n=0: [1, -2, -3, -52, -955, -24246, -771113, -29428232, ...];
%e n=1: [1, 0, -6, -60, -1062, -26208, -820560, -30994704, ...];
%e n=2: [1, 4, 0, -80, -1337, -30840, -932010, -34438500, ...];
%e n=3: [1, 10, 39, 0, -1722, -39996, -1138680, -40521096, ...];
%e n=4: [1, 18, 147, 648, 0, -50832, -1503546, -50844384, ...];
%e n=5: [1, 28, 372, 3048, 15465, 0, -1898490, -67990260, ...];
%e n=6: [1, 40, 774, 9580, 83248, 483240, 0, -85539792, ...];
%e n=7: [1, 54, 1425, 24420, 303363, 2844270, 18685905, 0, ...]; ...
%e in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
%e RELATED SEQUENCES.
%e The secondary diagonal in the above table that begins
%e [1, 4, 39, 648, 15465, 483240, 18685905, 861282832, 46085893011, ...]
%e yields A132612, column 1 of triangle A132610.
%e Related triangular matrix T = A132610 begins:
%e 1;
%e 1, 1;
%e 2, 1, 1;
%e 14, 4, 1, 1;
%e 194, 39, 6, 1, 1;
%e 4114, 648, 76, 8, 1, 1;
%e 118042, 15465, 1510, 125, 10, 1, 1;
%e 4274612, 483240, 41121, 2908, 186, 12, 1, 1;
%e 186932958, 18685905, 1424178, 89670, 4970, 259, 14, 1, 1; ...
%e in which row n+1 of T = row n of matrix power T^(2*n) with appended '1' for n>=0.
%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m-1))/Ser(A) )[m] ); A[n+1]}
%o for(n=0,30, print1(a(n),", "))
%Y Cf. A132612, A304189, A304188, A304191, A304193, A132610.
%K nonn
%O 0,2
%A _Paul D. Hanna_, May 07 2018