login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304193
G.f. A(x) satisfies: [x^n] (1+x)^((n+1)^2) / A(x) = 0 for n>0.
8
1, 4, 16, 144, 2346, 55236, 1688084, 63040736, 2770165274, 139623836116, 7925496107656, 499719554537584, 34625595715906866, 2613946666882042164, 213475621178226876156, 18748792440158256161216, 1761875767691411063734514, 176383456081424163875684516, 18739798321516251204837796864, 2105891800817103192582808107856
OFFSET
0,2
COMMENTS
Note that: [x^n] (1+x)^((n+1)*k) / G(x) = 0 for n>0 holds when G(x) = (1+x)^(k+1)/(1 - (k-1)*x) given some fixed k ; this sequence explores the case where k varies with n.
LINKS
FORMULA
A132618(n+1) = [x^n] (1+x)^((n+2)^2) / A(x) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 16*x^2 + 144*x^3 + 2346*x^4 + 55236*x^5 + 1688084*x^6 + 63040736*x^7 + 2770165274*x^8 + 139623836116*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)^2) / A(x) begins:
n=0: [1, -3, -4, -80, -1530, -40222, -1316104, -51439572, ...];
n=1: [1, 0, -10, -100, -1785, -45056, -1441440, -55510080, ...];
n=2: [1, 5, 0, -140, -2380, -55080, -1685620, -63186200, ...];
n=3: [1, 12, 56, 0, -3150, -74484, -2125948, -76230384, ...];
n=4: [1, 21, 200, 1020, 0, -96492, -2901052, -98301840, ...];
n=5: [1, 32, 486, 4540, 26015, 0, -3718000, -135081440, ...];
n=6: [1, 45, 980, 13640, 132810, 855478, 0, -172046940, ...];
n=7: [1, 60, 1760, 33520, 462150, 4790156, 34461260, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)^2) / A(x) = 0 for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 5, 56, 1020, 26015, 855478, 34461260, 1642995124, ...]
yields A132618, column 2 of triangle A132615.
Related triangular matrix T = A132615 begins:
1;
1, 1;
1, 1, 1;
6, 3, 1, 1;
80, 25, 5, 1, 1;
1666, 378, 56, 7, 1, 1;
47232, 8460, 1020, 99, 9, 1, 1;
1694704, 252087, 26015, 2134, 154, 11, 1, 1;
73552752, 9392890, 855478, 61919, 3848, 221, 13, 1, 1; ...
in which row n equals row (n-1) of T^(2*n-1) followed by '1' for n > 0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m^2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 07 2018
STATUS
approved