login
A178918
Smallest of two consecutive integers divisible respectively by two consecutive squares greater than 1.
2
8, 44, 63, 80, 116, 152, 188, 207, 224, 260, 296, 332, 351, 368, 404, 440, 476, 495, 512, 548, 575, 584, 620, 624, 639, 656, 692, 728, 764, 783, 800, 836, 872, 908, 927, 944, 980, 1016, 1024, 1052, 1071, 1088, 1124, 1160, 1196, 1215, 1224, 1232
OFFSET
1,1
LINKS
EXAMPLE
1791 is a term as 1791 and 1792 are divisible by 9 and 16 respectively.
MAPLE
with(numtheory):for n from 1 to 2000 do: k:=0:q:=floor(sqrt(n)):for m from
2 to q do: p1:=m^2:p2:=(m+1)^2:if irem(n, p1)=0 and irem(n+1, p2)=0 and k=0 then
k:=1:printf(`%d, `, n):else fi:od:od:
MATHEMATICA
f[p_, e_] := p^Floor[e/2]; maxsq[n_] := Times@@ (f @@@ FactorInteger[n]); aQ[n_] := (s = maxsq[n]) > 1 && AnyTrue[Rest @ Divisors[s], Divisible[n+1, (#+1)^2] &]; Select[Range[1232], aQ] (* Amiram Eldar, Sep 09 2019 *)
PROG
(Sage) is_A178918 = lambda n: any(all(((k+x)**2).divides(n+x) for x in range(2)) for k in divisors(n) if k > 1) # D. S. McNeil, Dec 29 2010
CROSSREFS
Cf. A178919.
Sequence in context: A210125 A044110 A044491 * A357896 A078895 A366430
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 29 2010
STATUS
approved