login
A178926
T(n,k)=Log base 2 of the number of nXk binary arrays with no element equal to the modulo 2 sum of its diagonal and antidiagonal neighbors
1
0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 2, 0, 0, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0
OFFSET
1,5
COMMENTS
Table starts
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.0.2.0.0.2.0.0.2.0.0.2.0..0.2.0.0..2.0..0.2.0.0.2.0.0.2.0.0.2.0.0.2.0.0.2.0.0.2
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.0.0.0.4.0.0.0.0.4.0.0.0..0.4.0.0..0.0..4.0.0.0.0.4.0.0.0.0.4.0.0.0.0.4.0.0.0
.0.2.0.0.4.0.0.2.0.0.4.0..0.2.0.0..4.0..0.2.0.0.4.0.0.2.0.0.4.0.0.2.0.0.4.0
.0.0.0.0.0.0.0.6.0.0.0.0..0.0.0.0..6.0..0.0.0.0.0.0.0.6.0.0.0.0.0.0.0.0.6
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.0.2.0.0.2.6.0.2.0.0.2.0..6.2.0.0..2.0..0.8.0.0.2.0.0.2.6.0.2.0.0.2.0
.0.0.0.4.0.0.0.0.8.0.0.0..0.4.0.0..0.0..8.0.0.0.0.4.0.0.0.0.8.0.0.0
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0
.0.2.0.0.4.0.0.2.0.0.8.0..0.2.0.0..4.0..0.2.0.0.8.0.0.2.0.0.4.0
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.0.0.6.0.0.0.0..0.0.0.0.12.0..0.0.0.0.0.0.0.6.0.0
.0.2.0.4.2.0.0.2.4.0.2.0..0.6.0.8..2.0..4.2.0.0.2.4.0.2.0
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0
.0.0.0.0.0.0.0.0.0.0.0.0..0.8.0.8..0.0..0.0.0.0.0.0.0
.0.2.0.0.4.6.0.2.0.0.4.0.12.2.0.0..4.0..0.8.0.0.4.0
.0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0
.0.0.0.4.0.0.0.0.8.0.0.0..0.4.0.0..0.0.16.0.0
.0.2.0.0.2.0.0.8.0.0.2.0..0.2.0.0..8.0..0.2
LINKS
EXAMPLE
All solutions for 5X5
..1..0..0..0..0....1..1..0..1..0....1..1..1..1..1....0..1..0..0..1
..0..0..1..1..0....1..0..1..1..1....1..0..1..0..1....0..1..0..0..1
..1..1..1..1..1....1..1..1..1..1....0..1..1..1..0....1..0..1..0..1
..0..0..1..1..0....1..0..1..1..1....1..1..1..1..1....1..1..0..0..0
..1..0..0..0..0....1..1..0..1..0....0..1..1..1..0....0..0..0..1..1
...
..1..1..1..0..1....1..1..0..0..0....0..0..0..1..1....1..0..0..1..0
..0..0..0..0..1....0..0..0..1..1....1..1..0..0..0....1..0..0..1..0
..0..0..1..0..0....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1
..1..1..0..1..0....1..0..0..1..0....0..1..0..0..1....0..0..0..1..1
..0..0..1..1..0....1..0..0..1..0....0..1..0..0..1....1..1..0..0..0
...
..1..0..1..1..1....0..1..1..0..0....0..0..1..1..0....1..0..1..0..1
..1..0..0..0..0....0..1..0..1..1....1..1..0..1..0....0..0..1..0..0
..0..0..1..0..0....0..0..1..0..0....0..0..1..0..0....0..1..1..1..0
..0..1..0..1..1....1..0..0..0..0....0..0..0..0..1....0..1..1..1..0
..0..1..1..0..0....1..0..1..1..1....1..1..1..0..1....0..0..1..0..0
...
..0..1..0..1..1....0..0..0..0..1....0..1..1..1..0....0..0..1..0..0
..1..1..1..0..1....0..1..1..0..0....1..1..1..1..1....0..1..1..1..0
..1..1..1..1..1....1..1..1..1..1....0..1..1..1..0....0..1..1..1..0
..1..1..1..0..1....0..1..1..0..0....1..0..1..0..1....0..0..1..0..0
..0..1..0..1..1....0..0..0..0..1....1..1..1..1..1....1..0..1..0..1
All solutions for 6X6
..0..0..1..1..0..0
..0..1..1..1..1..0
..1..1..0..0..1..1
..1..1..0..0..1..1
..0..1..1..1..1..0
..0..0..1..1..0..0
All solutions for 7X7
..1..1..0..1..0..1..1
..1..0..1..1..1..0..1
..0..1..0..1..0..1..0
..1..1..1..1..1..1..1
..0..1..0..1..0..1..0
..1..0..1..1..1..0..1
..1..1..0..1..0..1..1
CROSSREFS
Sequence in context: A051584 A028645 A028710 * A028637 A070208 A028629
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 04 2011
STATUS
approved