The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028710 Expansion of (theta_3(z)*theta_3(5z)*theta_3(25z)+theta_2(z)*theta_2(5z)*theta_2(25z)). 0
 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 16, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS EXAMPLE G.f. = 1 + 2*q^4 + 2*q^16 + 2*q^20 + 4*q^24 + 8*q^31 + 6*q^36 + 8*q^39 + 8*q^55 + 4*q^56 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^4] EllipticTheta[ 3, 0, q^20] EllipticTheta[ 3, 0, q^100] + EllipticTheta[ 2, 0, q^4] EllipticTheta[ 2, 0, q^20] EllipticTheta[ 2, 0, q^100], {q, 0, n}]; (* Michael Somos, Nov 23 2017 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^40 + A) * eta(x^200 + A))^5 / (eta(x^4 + A) * eta(x^16 + A) * eta(x^20 + A) * eta(x^80 + A) * eta(x^100 + A) * eta(x^400 + A))^2 + 8 * x^31 * (eta(x^16 + A) * eta(x^80 + A) * eta(x^400 + A))^2 / (eta(x^8 + A) * eta(x^40 + A) * eta(x^200 + A)), n))}; /* Michael Somos, Nov 23 2017 */ CROSSREFS Cf. A028711, A028712, A028713. Sequence in context: A028653 A051584 A028645 * A178926 A028637 A070208 Adjacent sequences:  A028707 A028708 A028709 * A028711 A028712 A028713 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:59 EDT 2022. Contains 354092 sequences. (Running on oeis4.)