login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Log base 2 of the number of nXk binary arrays with no element equal to the modulo 2 sum of its diagonal and antidiagonal neighbors
1

%I #20 Mar 31 2012 12:35:45

%S 0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,0,4,0,0,0,0,0,0,0,0,0,

%T 0,0,0,2,0,0,4,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,

%U 0,4,2,0,0,2,4,0,2,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0

%N T(n,k)=Log base 2 of the number of nXk binary arrays with no element equal to the modulo 2 sum of its diagonal and antidiagonal neighbors

%C Table starts

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

%C .0.2.0.0.2.0.0.2.0.0.2.0..0.2.0.0..2.0..0.2.0.0.2.0.0.2.0.0.2.0.0.2.0.0.2.0.0.2

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

%C .0.0.0.4.0.0.0.0.4.0.0.0..0.4.0.0..0.0..4.0.0.0.0.4.0.0.0.0.4.0.0.0.0.4.0.0.0

%C .0.2.0.0.4.0.0.2.0.0.4.0..0.2.0.0..4.0..0.2.0.0.4.0.0.2.0.0.4.0.0.2.0.0.4.0

%C .0.0.0.0.0.0.0.6.0.0.0.0..0.0.0.0..6.0..0.0.0.0.0.0.0.6.0.0.0.0.0.0.0.0.6

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

%C .0.2.0.0.2.6.0.2.0.0.2.0..6.2.0.0..2.0..0.8.0.0.2.0.0.2.6.0.2.0.0.2.0

%C .0.0.0.4.0.0.0.0.8.0.0.0..0.4.0.0..0.0..8.0.0.0.0.4.0.0.0.0.8.0.0.0

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0.0.0

%C .0.2.0.0.4.0.0.2.0.0.8.0..0.2.0.0..4.0..0.2.0.0.8.0.0.2.0.0.4.0

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0.0.0.0

%C .0.0.0.0.0.0.0.6.0.0.0.0..0.0.0.0.12.0..0.0.0.0.0.0.0.6.0.0

%C .0.2.0.4.2.0.0.2.4.0.2.0..0.6.0.8..2.0..4.2.0.0.2.4.0.2.0

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0.0.0.0.0

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.8.0.8..0.0..0.0.0.0.0.0.0

%C .0.2.0.0.4.6.0.2.0.0.4.0.12.2.0.0..4.0..0.8.0.0.4.0

%C .0.0.0.0.0.0.0.0.0.0.0.0..0.0.0.0..0.0..0.0.0.0

%C .0.0.0.4.0.0.0.0.8.0.0.0..0.4.0.0..0.0.16.0.0

%C .0.2.0.0.2.0.0.8.0.0.2.0..0.2.0.0..8.0..0.2

%H R. H. Hardin, <a href="/A178926/b178926.txt">Table of n, a(n) for n = 1..797</a>

%e All solutions for 5X5

%e ..1..0..0..0..0....1..1..0..1..0....1..1..1..1..1....0..1..0..0..1

%e ..0..0..1..1..0....1..0..1..1..1....1..0..1..0..1....0..1..0..0..1

%e ..1..1..1..1..1....1..1..1..1..1....0..1..1..1..0....1..0..1..0..1

%e ..0..0..1..1..0....1..0..1..1..1....1..1..1..1..1....1..1..0..0..0

%e ..1..0..0..0..0....1..1..0..1..0....0..1..1..1..0....0..0..0..1..1

%e ...

%e ..1..1..1..0..1....1..1..0..0..0....0..0..0..1..1....1..0..0..1..0

%e ..0..0..0..0..1....0..0..0..1..1....1..1..0..0..0....1..0..0..1..0

%e ..0..0..1..0..0....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1

%e ..1..1..0..1..0....1..0..0..1..0....0..1..0..0..1....0..0..0..1..1

%e ..0..0..1..1..0....1..0..0..1..0....0..1..0..0..1....1..1..0..0..0

%e ...

%e ..1..0..1..1..1....0..1..1..0..0....0..0..1..1..0....1..0..1..0..1

%e ..1..0..0..0..0....0..1..0..1..1....1..1..0..1..0....0..0..1..0..0

%e ..0..0..1..0..0....0..0..1..0..0....0..0..1..0..0....0..1..1..1..0

%e ..0..1..0..1..1....1..0..0..0..0....0..0..0..0..1....0..1..1..1..0

%e ..0..1..1..0..0....1..0..1..1..1....1..1..1..0..1....0..0..1..0..0

%e ...

%e ..0..1..0..1..1....0..0..0..0..1....0..1..1..1..0....0..0..1..0..0

%e ..1..1..1..0..1....0..1..1..0..0....1..1..1..1..1....0..1..1..1..0

%e ..1..1..1..1..1....1..1..1..1..1....0..1..1..1..0....0..1..1..1..0

%e ..1..1..1..0..1....0..1..1..0..0....1..0..1..0..1....0..0..1..0..0

%e ..0..1..0..1..1....0..0..0..0..1....1..1..1..1..1....1..0..1..0..1

%e All solutions for 6X6

%e ..0..0..1..1..0..0

%e ..0..1..1..1..1..0

%e ..1..1..0..0..1..1

%e ..1..1..0..0..1..1

%e ..0..1..1..1..1..0

%e ..0..0..1..1..0..0

%e All solutions for 7X7

%e ..1..1..0..1..0..1..1

%e ..1..0..1..1..1..0..1

%e ..0..1..0..1..0..1..0

%e ..1..1..1..1..1..1..1

%e ..0..1..0..1..0..1..0

%e ..1..0..1..1..1..0..1

%e ..1..1..0..1..0..1..1

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_ Jan 04 2011